
Grundlagen der Immunologie

14. Vorlesung:

Vakzinationen

Péter Engelmann

Primäre und sekundäre Immunantwort

Vakzinationen

- Vacca, -ae (f): Kuh
- Edward Jenner 1796
- Variolation Vakzination

Edward Jenner (1749-1823)

Passive und aktive Immunität

Natürlich aktiv

Infektion

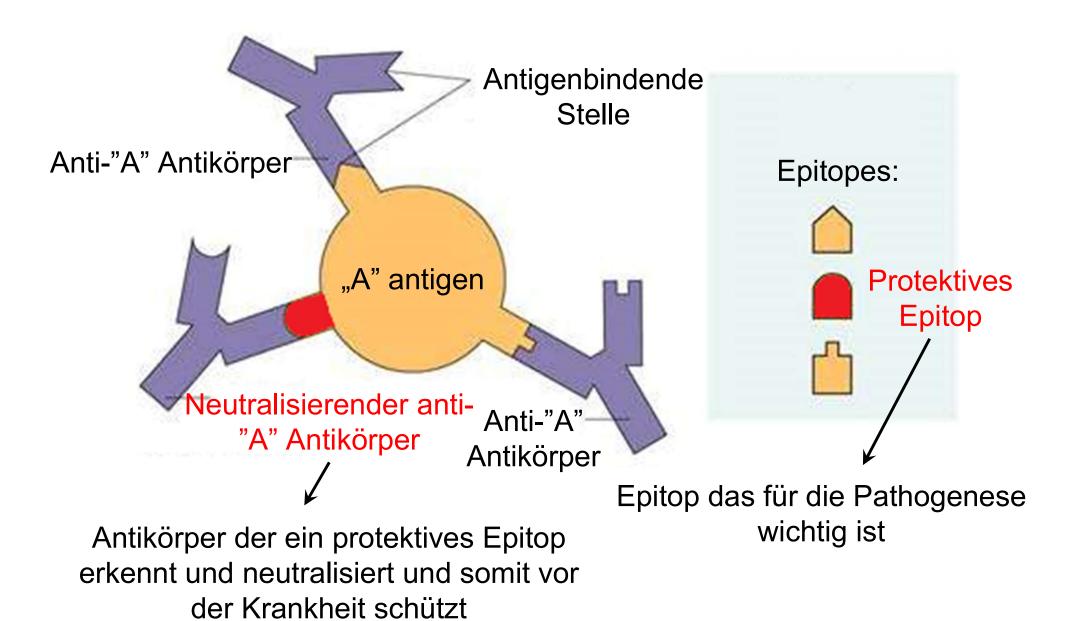
Natürlich passiv

Stillen: mütterliche Antikörper schützen das Baby temporär

Künstlich aktiv

Impfung (aktive Immunisierung mit einem Antigen)

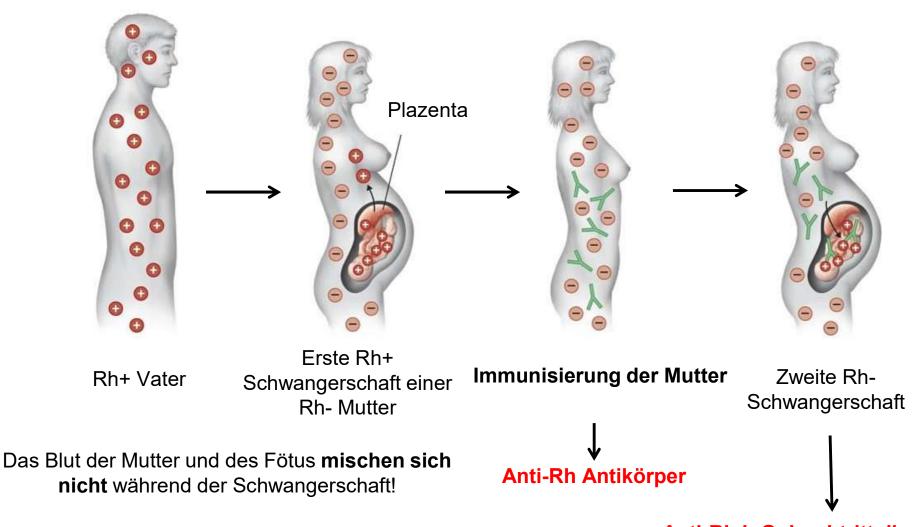
Immunologisches Gedächtnis


Künstlich passiv

Antiserum (passive Immunisierung mit Antikörpern)

Schnell aber nur temporärer Schutz

Neutralisierende Antikörper


Passive Immunisierung

Anti-Rh(D) Antikörper

Tetanus Antitoxin

Anti-HBsAg

Rh Alloimmunisierung

Während der Geburt dringt ein bisschen Blut des Neugeborenen unumgänglich in den Kreislauf der Mutter ein.

Anti-Rh IgG durchtritt die Plazenta und verursacht Hämolyse!

Prävention der Rh Alloimmunisierung

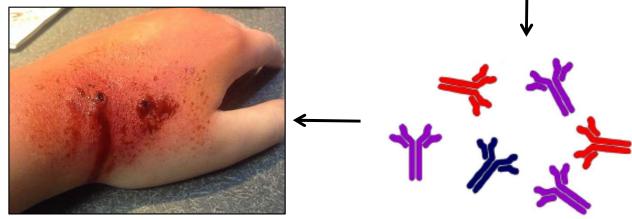
Die Rh- Mutter wird mit **anti-Rh(D) Antikörper** (RhIG) nach der Geburt behandelt.

Humanes anti-Rh(D)
Immunglobulin

Man denkt dass der Antikörper alle Rh+ Erythrozyten eliminiert die in den Mütterlichen Kreislauf eingedrungen sind.

Es verhindert die Erkennung der Rh+ Erythrozyten durch das mütterliche Immunsysten.

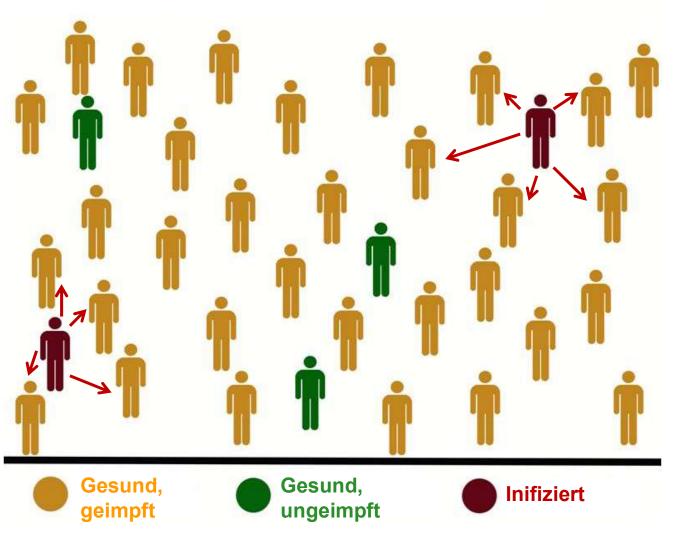
Falls die Rh- Mutter einen weiteren Rh+ Fötus trägt, werden keine anti-Rh Antikörper die Plazenta überschreiten und dem Baby Schaden.


Gegengifte

Melken der Schlange, sammeln von Toxin A

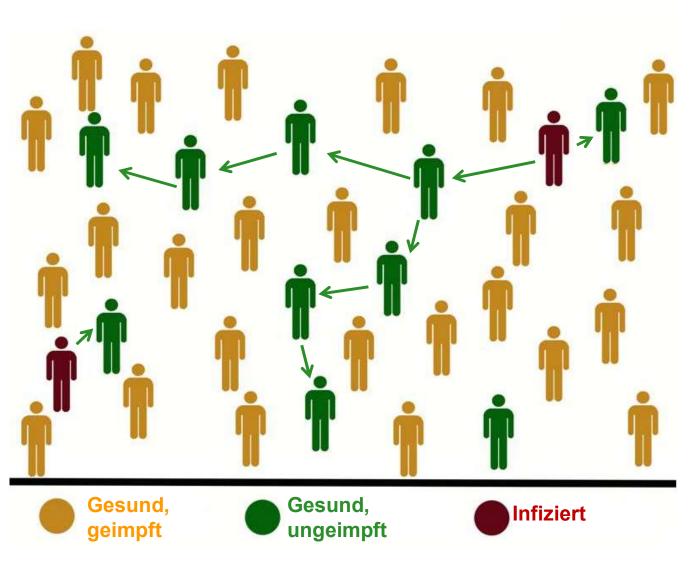
Neutralisierung des Toxins A

Gabe des anti-A Antikörpers nach Schlangenbiss (**passive Immunisierung des Menschen**)


Polyklonale Kaninchen anti-A Antikörper

- Gabe eines Antigens um eine Immunantwort gegen das Antigen zu provozieren.
- Im Fall der Tierforschung:
 - **—Produktion von Antikörpern** (z.B. Hybridom Technik, Gegengifte)
 - -Auslösung der Autoimmunität (z.B. humanes Knorperl Proteoglykaninduzierte Arthritis in Mäusen) zur **Modellierung** menschlicher autoimmune Störungen
- Im Fall von Menschen:
 - -Um ein **langanhaltendes Immunologisches Gedächtnis** gegen ein Pathogen oder Toxin zu induzieren
- Adjuvantien \rightarrow Immunantwort steigt $\uparrow^{[9.]}$ (3. Praktikum)
- Herdenimmunität: Nicht-geimpfte sind auch geschützt.[10.]
- Erste Impfung: **Edward Jenner** impfte Menschen mit Kuhpocken um die Pocken zu verhindern. vacca = Lateinisch für Kuh

Edward Jenner (1749-1823)


Herdenimmunität I.

Ein großer Teil der Bevölkerung ist geimpft.

Die Infektion kann sich nicht ausbreiten somit sind auch ungeimpfte Personen geschützt.

Herdenimmunität II.

Ein relative großer Anteil der Bevölkerung ist ungeimpft.

Die Infektion kann sich in der Bevölkerung ausbreiten.

Der MMR Skandal

- Februar 1998: Andrew Wakefield und seine Kollegen veröffentlichen einen Artikel im Lancet (eines der führenden Journale der Medizin) über die Möglichkeit dass der MMR Impfstoff Autismus verursachen kann.^[22.]
- MMR Impfung war damals in vielen Ländern Pflicht (einschließlich Ungarn).

∀ SKANDAL

- Zwischen 2002 und 2003 wurden immer mehr Studien veröffentlicht die Wakefields behauptungen wiedersprachen, da sie keine Korelation zwischen Autismus und dem MMR Impfstoff fanden [23.], Viele Behörden und Organisationen (auch die Amerikanische CDC) deklarierten dass es keine Korelation gab.
- 2004: Ein Reporter der Sunday Times identifizierte unveröffentlichte **finanzielle Interessenkonflikte** von Wakefield und fand heraus das Wakefield Daten **gefälscht** hat.^[24,25,26.]
- Zehn der zwölf Koautoren zogen 2004 den Artikel zurück und der Artikel wurde 2010 vollständig vom Lancet zurückgezogen.^[27,]
- Wakefields wurde 2010 vom UK medical register entfernt.^[28.]

Dr. Andrew Wakefield vor dem GMC Hauptquartier kurz nachdem er seine Approbation in 2010 verlor.

"Möglicherweise der schäflichste medizinische Scherz seit 100 Jahren^[29.]"

1. attenuierter Lebendimpfstoff

Enthält lebende, attenuierte (=abgeschwächte) Pathogene

Vorteil: Ähnelt der physiologische Infektion am meisten - Resultiert in der besten Immunantwort

Nachteil: Risiko einer virulenten Reversion

Beispiele: MMR, BCG, Oraler Polio Impfstoff

Morbilli (Masern)

Mumps

Röteln

BCG

Scar at the site of BCG vaccination.

- Enthält Mycobacterium bovis Bakterien.
 - –Wird zur Prävention der schweren Tuberkolose und der Komplikationen genutzt.
 - —Auch zur Behandlung von Blasenkrebs genutzt (wird in das Lumen der Blase injiziert).^[32.]
- Intradermale Gabe, Narbenbildung!
- Effektivität ist variabel und etwas Kontrovers.^[33,34,35.]
- Keine Pflicht in vielen Ländern. (in der UK bis 2005, in der USA nie eingeführt) In Ungarn ist es Pflicht.
- WHO Empfehlung: Jedes Kleinkind an Orten in denen TB endemisch ist sollte geimpft warden um Miliär TB und TB Meningitis zu verhindern.^[36.]
- Bietet auch ein wenig Schutz gegen **Lepra.**^[37.]

2. Totimpfstoff

Enthält inaktivierte (=abgetötete) ganze Pathogene

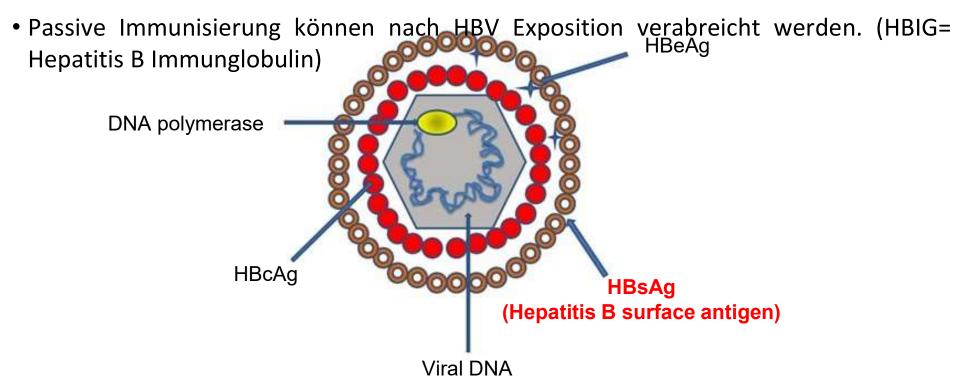
Vorteil: sicher

Nachteil: Resultiert in einer schwächeren Immunantwort

Beispiele: Inaktivierter Polio Impfstoff, saisonaler Grippeimpfstoff

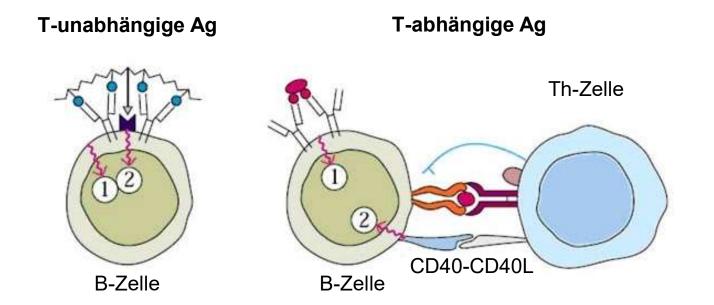
3. Subunit-Vakzin

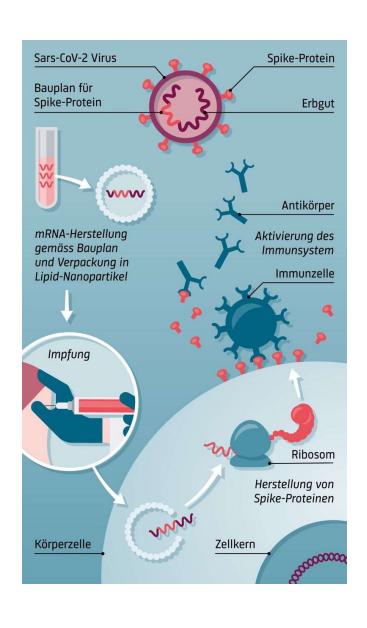
Enthält ein bestimmtes Antigen des Pathogens Beispiele: HBV, HPV


4. Toxoidimpfstoff

Enthält inaktiviertes Toxin Beispiele: Diphtherie, Tetanus

HBV Impfung


- Enthält das **Oberflächen Antigen** (HBsAg) des Hepatitis B Virus (HBV).
- **Rekombinanter Untereinheiten Impfstoff**, das virale Antigen wird in Hefe produziert.^[39.]
- Muss mehrfach gegeben werden, die produzierten anti-HBsAg Antikörper schützen von einer Infektion. → Langzeitschutz ist variabel aber Antikörperspiegel können gemessen werden.
- In Ungarn Pflicht.
- Kann mit anderen Impfungen kombiniert werden^[42,43.], z.B. DTaP+IPV+Hib+Hep B.


5. Konjugationsimpfstoff

Enthält Pathogene mit polysacharidkapseln (=T-unabhängige Antigene, können kein Gedächtnis induzieren) die an ein Trägerprotein gebunden sind (=T-abhängiges Antigen, induziert Gedächtnis)

Beispiele: Haemophilus Influenzae B, Neisseria Meningitidis

6. Nukleinsäureimpstoffe

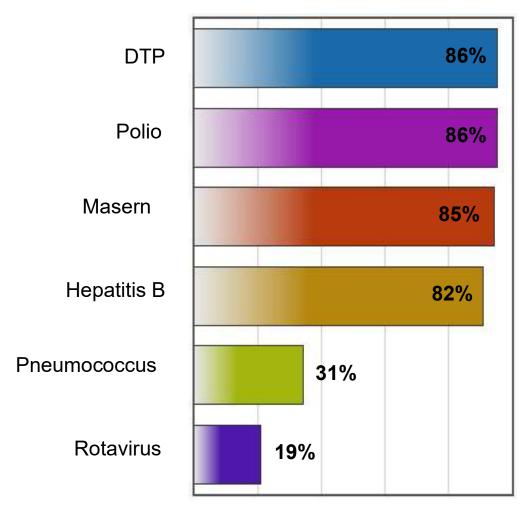
Einige nennenswerte Fälle

Dezember 2014.: Masern Ausbruch im Amerikanischen Disneyland mit 189 Patient, die meisten hatten nicht die Masern Impfung erhalten.^[54.]

First Case of Diphtheria in Spain Since 1986 After Parents Shun Vaccination

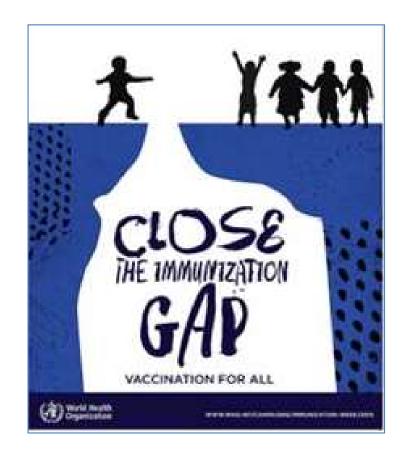
Juni 2015.: Ein 6 jähriger junge starb an Diphterie in Spanien, wo die Krankheit seit 1986 nicht mehr aufgetreten ist. Die Eltern verhinderten die Impfung des Kindes im Kleinkindalter.^[55.]

Children paralysed in Ukraine polio outbreak


By James Gallagher Health editor, BBC News website

© 2 September 2015 | Health

Poliovirus tauchte nach 5 Jahren wieder in Europa auf. [56.]


Errungenschaften der WHO

Ziele des "Global Vaccine Action" Plans:

- >90% Impfabdeckung
- AUSLÖSCHUNG VON POLIO

Danke für Ihre Aufmerksamkeit!

Emil Adolf von Behring

Erhielt 1901 den Nobelpreis für Physiologie und Medizin: Für seine Arbeit über Serumtherapie, besonders der Anwendung dieser gegen Diphterie.^[58.]

Erhielt 1951 den Nobelpreis für Physiologie und Medizin: Für seine Entdeckungen bezüglich des Gelbfiebers und wie man es bekämpft.^[59.]