

12. Praktikum: Zelluläre Immunantwort, Suppression, MALT, SALT

Grundlagen der Immunologie

Universität Pécs, Klinisches Zentrum Institut für Immunologie und Biotechnologie Pécs, 2023.

Zellvermittelte Immunantwort (CMI)

Zytotoxizität	Th1-vermittelte Makrophagenaktivierung
Effektorzellensind mit direkterzytotoxischer Tätigkeit versehen:- CTL (CD8+ Tc),- γδ T- Zellen- NK- Zellen, NK-T-Zellen- Makrophagen	<u>Effektorzellen</u> produzieren Zytokine: - Th1- Zellen: IL-2, INFγ, GM-CSF - Makrophagen: IL-12
 zytosolische Antigene in den Zielzellen: Intrazelluläre Viren und Bakterien Allogene Zellen - mit kleinen Histokompatibilitätsantigenen Tumorzellen chemisch geänderte Zellen Protozoen: Toxoplasma 	 <u>Antigene in Phagolysosomen der infizierten Makrophagen:</u> intrazelluläre Bakterien, Pilze, Parasiten, Viren Kontaktantigene - Haptene (Metallionen, kleiner Molekül-komplex mit Hautproteinen) Pneumocystis carinii

Zytotoxizität

CD8+ T-Zellen

CD8+ Zytotoxische T- Lymphozyten: CTL

Aktivierte zytotoxische T-Zellen(Tc) = Effektor-CTL TcR $\alpha\beta$, CD8+ T-Zellen MHC-I-beschränkte antigenspezifische Erkennung

Die Entstehung der Effektor CD8+ T-Zellen: CTL

Zur Aktivierung des Gedächtnis-CTL ist die Hilfe der Th1-Zellen nicht mehr nötig

Stadien der CTL-vermittelten Tötung von Zielzellen:

- 1. Antigenerkennung (MHC-I + Peptid auf Zielzelle)
- 2. Verknüpfung des CTLs mit der Zielzelle
- 3. CTL zytoplasmatische Rearrangierung
- 4. Entleerung der intrazellulären Granulen von CTL
- 5. Zielzelle-Apoptose
- 6. CTL-Ablösung von der getöteten Zielzelle

Zytotoxische T-Zellen können in den Zielzellen einen programmierten Zelltod herbeiführen

Lösliche zytotoxische Effektorproteine: Perforin und Granzyme Membrangebundene Effektorproteine: Fas-Ligand (FAS-L)

Chrome-51 Ausscheidungs Assay

In vitro Methode zur Messung der **Zelltötungskapazitäten** der zytotoxischen T Zellen (T, NK)^[18.] und **ADCC**^[19.] (Antikörper-abhängige Zell-mediierte Zytotoxizität, siehe Vorlesungen), z.B.:

Untersuchung Zytotoxischer Zellen von Krebspatienten in Anwesenheit kanzeröser Zellen.

- 1. Tc Zellen werden mit Cr-51markierten Zielzellen inkubiert
- 2. Zielzell wird getötet, Chrom wird freigesetzt
- 3. Zentrifugierung, Zellen und Zellfragmente bildent ein Pellet am Boden des Reagenzglases.
- 4. Der Chromgehalt des Überstands wird gemessen

Zytotoxizität

NK-Zellen

Natürliche Killerzellen (NK-Zellen)

Entwickeln sich im Knochenmark von der gemeinsamen lymphatischen Vorläuferzelle

- 10-15% der Lymphozyten = LGL-Zellen large granular lymphocytes = große granuläre Lymphozyten
- TcR- CD3-, CD4-, CD8+/-, CD2+,
 CD16+ (FcγRIII) CD56+,
- Aktivierbar mit Zytokinen (INF α und β , IL-12)
- Sie sezernieren Zytokine: INF $\gamma \rightarrow$ Immunregulierung (Th1)
- Ohne vorherige Immunisierung oder Aktivierung können infizierte oder einige Tumorzellen töten.
- Derselbe Tötungsmechanismus wie bei den CTL

Funktion: frühe Antwort gegen Infektion durch bestimmte intrazelluläre Viren, Bakterien und Tumorzellen

NK-Zell-Rezeptoren:

killerhemmende Rezeptoren (KIR): erkennen eigene MHC-I Moleküle auf normalen Zellen KIR-Ligand – HLA-A, B, C NKG2-Ligand – HLA-E

<u>Aktivierungsrezeptoren (KAR)</u>: erkennen veränderte Glycosylierung auf virusinfizerten - oder Tumorzellen-Oberflächen

Das entgegengesetzte Signalmodell der NK-Zellenaktivierung

ADCC: IgG-vermittelte <u>Antikörper-a</u>bhängige <u>z</u>elluläre <u>Zytotoxizität</u>

Fc-Rezeptoren der Killerzellen binden an die IgG-opsonisierte Zielzellen,

→Mediatoren sind aus den Granulen der NK-Zellen freigesetzt, die die Zielzelle abtöten.

ADCC

Dieselben löslichen zytotoxischen Effektorproteine wie bei den CTL → Perforin und Granzyme

Zytotoxizität

 $\gamma\delta$ T- Zellen

$\gamma\delta$ T- Zellen

1-5 % der T- Zellen im Blut und lymphytischen Organe,

Bis zu 50% in epithelreichen Geweben, Körperoberflächen

- intraepidermale Lymphozyten: CD4- und CD8-
- intraepitheliale Lymphozyten: CD8+
- werden beim embryonalen Leben produziert
- keine Rezirkulation,
- geringe TcR Diversität → Gewebespezialisierung zur Erkenneung bestimmter Antigene

Antigen Erkennung: - MHC-unabhängig, aber antigenspezifisch

Funktionen: "immunologische Überwachung der Körperoberflächen"

- - Beseitigung beschädigter Zellen und Krankheitserreger ightarrow Zytotoxizität
- - Immunregulation durch Zytokinproduktion

$\gamma\delta$ T- Zellen

Antigene, welche konstitutiv auf körpereigenen Zellen und auf mikrobiellen Erregern nachgewiesen werden können:

- Phospho-Liganden,
- Virusproteine,
- Hitzeschockproteine an der Zelloberfläche
- Induzierte Antigene:
- nicht-klassische MHC-Klasse-Ib-Moleküle (MICA, MICB)

Th1-Zell vermittelte zelluläre Immunantwort

Typ-IV-Überempfindlichkeitsreaktion

Hypersensibilitätsreaktion vom verzögerten Typ-IV (DTH)

Intravesikuläre Pathogene und Kontakt-Antigene

Intrazelluläre Bakterien

Mycobacterium tuberculosis Mycobacterium leprae Listeria monocytogenes Brucella abortus Intrazelluläre Fungi

Pneumocystis carinii Candida albicans Histoplasma capsulatum Cryptococcus neoformans Intrazelluläre Parasiten Leishmania sp. Intrazelluläre Viren Herpes simplex virus Pocken Masern Kontaktantigene Picrylchloride Haarfarbstoffe Nickelsalze Formaldehyd Gift-Efeu **Gift-Eiche**

Phasen der Typ-IV Hypersensibilitätsreaktion

 Sensibilisierungsphase: dauert 1-2 Wochen nach dem Primärkontakt mit dem Antigen.

APC (meistens Makrophagen oder Langerhans-Zellen) produzieren IL-12, um Th-Zellen zu induzieren.

- <u>Aktivierungsphase</u>: Th1-Aktivierung, Proliferation, manchmal CD8+ CTL-Aktivierung.
- <u>Effektorphase</u>: der sekundäre Antigenkontakt verursacht Th1-Gedächtniszell-Aktivierung, die Zytokine sezernieren (24h), und die dann Makrophagen aktivieren (Spitze in 48-72 Stunden). Nur 5% der Leukozyten sind T-Zellen, 95% sind unspezifisch.

1. und 2. Phase der Reaktion vom verzögerten Typ (DTH)

Nach dem zweiten Antigenkontakt

Phase der Hypersensibilitätsreaktion vom verzögerten Typ (Typ IV = DTH)

<u>Granulomatosus Reaktion</u>: wenn intravesikuläre Krankheitserreger in den Zellen überleben (persistieren), lösen eine verlängerte DTH-Antwort aus – <u>chronische Infektion</u>

→ die ununterbrochene
 Makrophagenaktivierung durch kontinuärliches
 Zytokin- und Wachstumfaktorproduktion führt
 zur Entstehung eines Granuloms (Knötchens).

Rieserzelle, epitheloide Zelle Gewebeschädigung, Necrosis, Fibrose.

Struktur eines Granuloms

Typ IV der Hypersensibilität – Struktur des Granuloms bei Tuberkulose

Entstehung der Kontaktdermatitis, Ekzem – Typ IV der Hypersensibilitätsreaktion

Suppression der Immunantwort

Wichtige Schritte der Immunantwort

Erkennung Aktivierung Differenzierung Effektor Funktion Gedächtnis **Suppression**

Hauptfaktoren der suppression

- 1. Antigen als Hauptregulator
- 2. Notwendigkeit der Co-stimulation
- 3. Regulatorische T-Zellen
- Regulation der humoralen Immunantwort Regulatorische B-Zellen Suppression durch Antikörperfeedback Anti-idiotyp Antikörper

1. Antigen als Hauptregulator

Aktiviert T- und B-Zellen

Antigen Art, Dosis und Lokalisierung beeinflussen die Immunantwort

 $T_H1 vs T_H2$

Elimination/Entfernung des Antigens stoppt weitere Aktivierung

2. Notwendigkeit der Co-Stimulation

Nature Reviews | Cancer

3. Regulatorische T-Zellen

```
Phänotyp: CD3<sup>+</sup> CD4<sup>+</sup> CD25<sup>+</sup> FoxP3<sup>+</sup>
```

FoxP3 Mutation: IPEX Syndrom (immune dysregulation, polyendocrinopathy, enteropathy, X-linked)

Ursprung: Thymus (natürlich) oder Peripherie (induziert)

Suppressionsmechanismen: Zytokinsekretion: IL-10, TGFβ *IL-10^{-/-} Mäuse: Colitis* Block der Co-Stimulation durch CTLA-4 IL-2 "Verbrauch" durch IL-2Rα (CD25, hoch-affiner IL-2R)

3. Induzierte Regulatorische T-Zellen

3. Regulatorische T-Zellen: Mechanismen

4. B-Zell Suppression

- 4.1 Regulatorische B-Zellen (B_{reg})
- 4.2 Suppression durch Antikörperfeedback
- 4.3 Anti-Idiotyp Antikörper

4.1 Regulatorische B-Zellen

 B_{reg} Zellen produzieren **IL-10**, IL-35, und TGF- β

Verhindern die Vermehrung pathogener T-Zellen und anderer pro-entzündlicher Lymphozyten

Fördern T_{reg} Zellen

Noch kein definitives Phänotyp identifiziert

4.2 Suppression durch Antikörperfeedback

Der hohe Antikörperspiegel blockt weiter B-Zell Aktivierung

IgG + Antigen Immunkomplex inhibiert B-Zell function durch binding zu FcγRIIb

(IgM + Antigen Immunkomplex fördert weitere B-Zell Aktivierung!)

Fig 12-21

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

4.3 Anti-idiotyp Antikörper

Netzwerk Hypothese (Niels Jerne): Suppression durch Antikörper

Funktion:

- •Suppression von B- und T-Zellen
- •Bildung des funktionellen Gedächtnis
- •Biologisches mimicry (insulin anti-insulin antianti-insulin)

+1a: Pathologische Suppression: Myeloid Derived Suppressor Cells

Das Tumormikroumgebung induziert die Differenzierung von MDSCs aus verschiedenen myeloiden Zellen (Neutrophilen, Monozyten, Dendritische Zellen)

MDSCs unterdrücken die antitumorale Immunantwort und fördern das Tumorwachstum

Yin K et al 2020. Front. Oncol. 10:610104. doi: 10.3389/fonc.2020.610104

+1b: Pathologische Suppression: Tumoren hemmen T-Zellen über immunologische Checkpoints

Tumoren exprimieren hemmende Moleküle, die zur Blockade der Aktivierung von T-Zellen führen (siehe Folie #7)

Die gezielte Hemmung dieser Inhibitoren ist ein vielversprechender Bereich Der Tumorimmuntherapie (Nobelpreis für Physiologie oder Medizin, 2018, James P Allison und Tasuku Honjo)

Regionale Immunität: MALT, SALT

Regionales Immunsystem

Die Ansammlung von *Immunzellen* und *Molekülen* mit speziellen Funktionen an einer bestimmten anatomischen Stelle

Gastrointestinal tract MALT: Mucosa Associated Lymphoid Tissue

Cutaneous immune system SALT: Skin Associated Lymphoid Tissue

Schleimhautassoziiertes lymphatisches Gewebe (MALT)

Mukosa (Schleimhaut)-assoziiertes lymphatisches Gewebe (MALT)

- GALT: Mukosa des Darmtraktes (gastrointestinaler Trakt)
- NALT: Nasal-associated lymphoid tissue
- BALT: Mukosa in den Bronchien (respiratorischer Trakt) -
- UALT: urogenitaler Trakt

Darm

Große Oberfläche: 200 m²

```
~5x10<sup>10</sup> Lymphozyten (Blut: 10<sup>10</sup>)
```

Reisige Menge an Mikroben: 10¹⁴

Riesige Menge von harmlosen (und wichtigen!) Fremdmaterialien: Nahrung und Mikroben

Kleine Menge an Erregern

Das Immunsystem muss die wenigen gefährlichen Krankheitserreger in der großen Menge harmloser Antigene finden

Empfindliches Gleichgewicht zwischen Toleranz und Abwehr

Intestinale Lymphgewebe

Fig 14-1

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Organisiertes MALT (O-MALT)

Antigen Erkennung, Aktivierung der Immunantwort "Programmiertes" Lymphgewebe: entwickeln sich in utero Peyerscher Plaque, Mandeln

"Induktives" Gewebe: entwickeln sich nach der Geburt, abhängig von Antigen Menge

Cryptopatch - isolated lymphoid follicle spectrum

Diffuses MALT (D-MALT)

"Effektor Gewebe" Gedächtnislymphozyten, Plasmazellen

Programmiertes Lymphgewebe: Peyersche Plaques

SED: Subepithelial dome FAE: Follicle associated epithelium

UM Mörbe et al 2021. Mucosal Immunology 14:793-802

Programmiertes Lymphgewebe: Mandeln

Normal tonsil

Inflamed tonsil

LTi+T cells/B cells/FDCs/GC reaction

Angeborene Immunität des intestinalen Immunsystems: Epithelzellen

Epithelzellen/Enterozyten

- Becherzellen: Mukus Sekretion
 - mukus: innere (dichte) und äußere (weniger dichte) Schicht
 - Antigen "sampling..."
- Paneth Zellen: anti-mikrobielles Peptid (AMP) Sekretion (defensins, REGIII)
- M-Zellen: Antigenen transportieren

...alle sind abgeleitet von Intestinal (epithelial) Stammzellen (ISC)

Epithelzellen exprimieren PRRs (TLRs, NLRs) Können entweder Entzündung oder Toleranz auslösen

Rolle der epithelialen Barrieren: Prävention der mikrobiellen Kolonisation

M-Zellen transportieren Antigenen aus dem Lumen zur APCs

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

(Keine Antigenpräsentation!)

Peyer's patch

Becherzellen: nicht nur Schleimsekretion...

Gustafsson et al. eLife 2021;0:e67292. DOI: https://doi.org/10.7554/eLife.67292

GAP: Goblet cell associated Antigen Passages

Transport luminaler Antigene zu darunter liegenden mononukleären Phagozyten

Innate Immunität des intestinalen Immunsystems

Dendritische Zellen, Makrophagen

Antigenpräsentation in mLNs Fördern die Toleranz (IL-10, TGF β) DCs: exprimieren retinal dehydrogenase \rightarrow sezernieren Retinsäure \rightarrow induziert Homing in die Schleimhäute

Innate lymphoide Zellen

Lymphoide Zellen (Ursprung), aber sie exprimieren keine Antigenrezeptoren

Sezernieren Zytokinen

ILC1: NKs + non-cytotoxic ILC1s

ILC2: Immunantwort gegenüber Helminthen, Allergie (IL-5, IL-13)

ILC3: Schleimhaut Heilung (IL-22), Entzündung (IL-17a) (+ LTi cells)

Charakteristika der durch MALT generierten humoralen Immunantwort

lgA

~2g IgA sezerniert täglich

TGFβ (produziert von Epithelzellen, DCs, Tregs) induziert IgA Isotypwechsel Neutralisation: verhindert Translokation durch die Epithelschicht

Dimer

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

IgA ist durch Epithelzellen auf die Mukosaoberfläche transportiert

Fig 14-8

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Charakteristika der durch MALT generierten humoralen Immunantwort

- Bildung von IgA-Antikörpern: IgA1 im Serum, IgA2 in den Sekreten
- IgA1 wird durch Asialoglycoprotein-Rezeptoren der Hepatozyten in die Galle sezerniert – Immunabwehr des oberen Gastrointestinaltraktes
- IgA2 \rightarrow pFcR-Bindung
- Opsonisierung → FcR von Granulozyten, Makrophagen → Phagozytose
- Komplementaktivierung → Bakteriolyse

Homing zu mukosalen Lymphgewebe

nc

	1		oth I''	0 · · · O 004E1	<u> </u>	
nhae	Lichtmann and Pillai	Cellular and Molecular Immunology	8 ^{ul} edition	(:onvright (c) 2015 h	w Saunders an ir	nnrint of Elsevier 1
wuo,		Condiar and molecular initiatiology.	0 00111011.	oopyngin e zoro s	y ouunuoio, un m	

	Endothelium	Leukozyt
Adhesion molecule	MAdCAM-1	α4β7
Chomokino	CCL25	CCR9
CHEITIONITE	CCL28	CCR10

Effektor- Lymphozyten wandern zum MALT

Figure 10-21 Immunobiology, 6/e. (© Garland Science 2005)

Kutanes Immunsystem

2m² ~2x10¹⁰ Lymphozyten Physische Barriere

Sonnenbrand Mikroben Träumen

Fig 14-9

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Zellen des Haut-Immunsystems

Keratinozyten

Physische Barrier Zytokinen: TNF, IL-1, IL-6, IL-18, IL-25, IL-33 (inflammation); IL-10 (regulation) Chemokinen: CCL27 Wachstumsfaktoren: PDGF, FGF, GM-CSF Anti-mikrobielles Peptiden: defensins, cathelicidins Aktivierung: durch PRRs (TLRs, NLRs)

Dendritische Zellen

Langerhans Zellen Migrate to regional lymph nodes following phagocytosis of antigens Present antigens to T cells, imprint skin-homing properties

T-Zellen

Intraepidermal: mainly CD8⁺ or $\gamma\delta$ T cells Dermal: CD4⁺ (T_H1, T_H2, T_H17, T_{reg}), mostly memory T cells

Homing zur Haut

	Endothelium	Leukozyt
Adhesion molecule	E-selectin	CLA
	CCL17	CCR4
Chemokines	CCL1	CCR8
	CCL27	CCR10

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Dichotomie des Immunsystems

