Immunológia alapjai

18. előadás: Regionális immunitás MALT és SALT

Regionális immunitás

Szisztémás immunitás

Regionális nyirokcsomók, lép

Lokális/regionális immunitás

MALT = mucosa associated lymphoid tissues

(mukóza-asszociált nyirokszövetek)

Gasztrointesztinális traktus

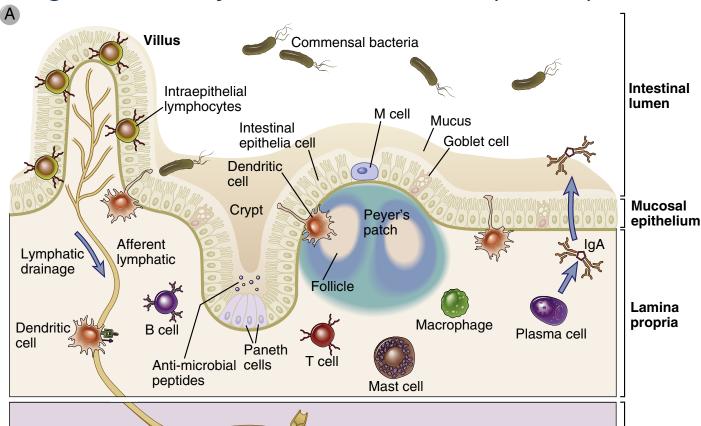
Légutak

Urogenitális traktus

Bőr immunrendszer

Bél

Nagy felszín (>200m²)


Hatalmas mennyiségű ártalmatlan (de hasznos!!) idegen antigén: étel + bélflóra

Kis mennyiségű patogén

Tolerancia és támadás közti finom egyensúly

Nyirokszövetek a bélben

"Programozott nyirokszövetek:" PP (+mLN)

Peyer plakk/ colon plakk

Mezenteriális nyirokcsomó

regionálos nyirokcsomó!

Mesentery

Fig 14-1

Mesenteric lymph node

Nyirokszövetek a bélben

SILT: Szoliter intesztinális nyirokszövetek

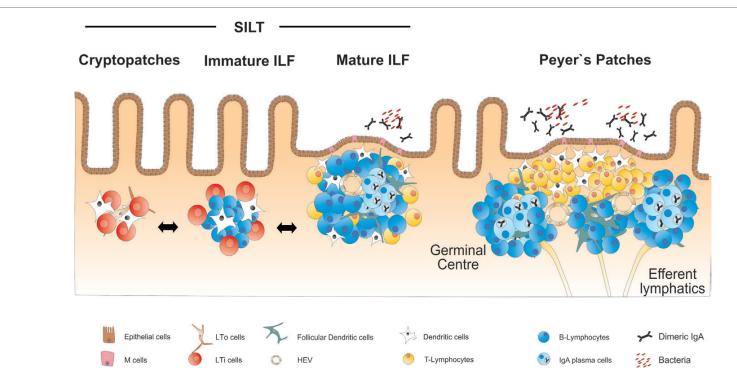


FIGURE 1 | Overview on the anatomy and structure of CP, ILF, and PP in the small intestine. SILT consists of a dynamic continuum of structures ranging from small cryptopatches (CP) to large mature isolated lymphoid follicles (ILF). CP start to develop into immature ILF by recruiting B cells. Mature ILF contain one big B cell follicle and develop germinal centers, vascular structures, and a follicle-associated epithelium. PP represent the most structured lymphoid organs in the intestine, containing several B cell follicles and distinct T and B cell areas.

Intesztinális immunrendszer sejtjei

Epithel sejtek: fizikai barrier

Kehely sejtek: nyák szekréció

nyák: belső (sűrű) és külső (lazább) réteg

antigén gyűjtés...?

Paneth sejt: anti-mikrobiális peptidek szekreciója

M-sejt: antigén transzport

...mind az intesztinális (epitél) őssejtből származnak (Intestinal stem cells, ISC)

Az epithel sejtek mintázat felismerő receptorokat (PRR) expresszálnak (TLR, NLR)

PRR aktiváció gyulladást vagy toleranciát vált ki

Intesztinális immunrendszer sejtjei

M-sejt: antigén transzport a lumen felől (nem antigén prezentáció!!)

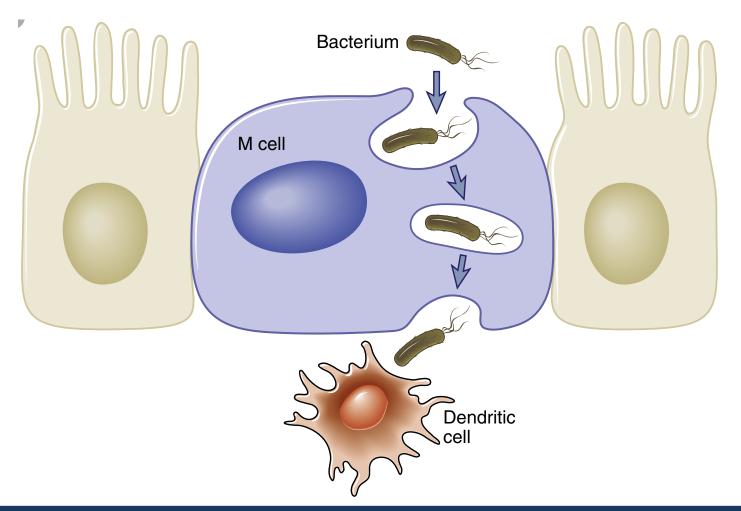


Fig 14-3

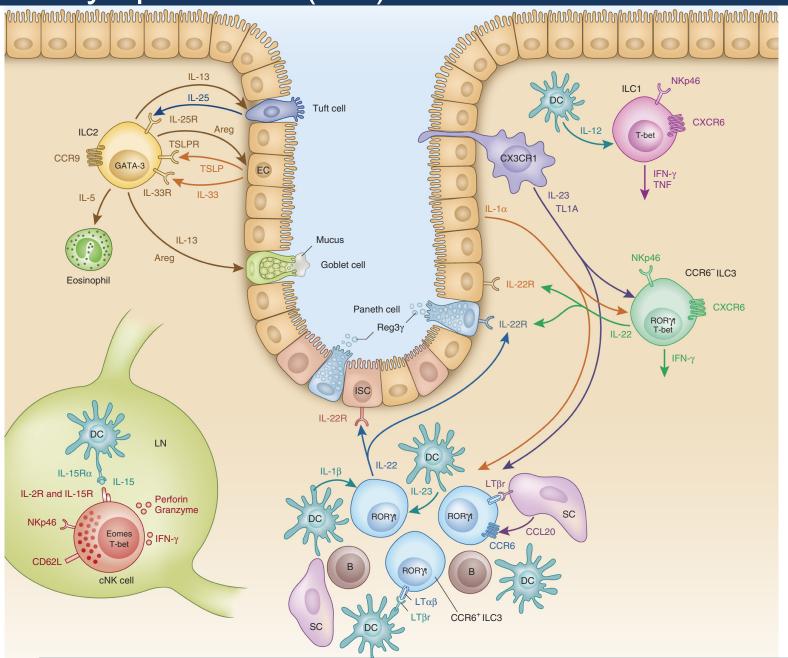
Intesztinális immunrendszer sejtjei

Dendritikus sejtek, makrofágok

Antigén prezentáció a mezenteriális nyirokcsomókban

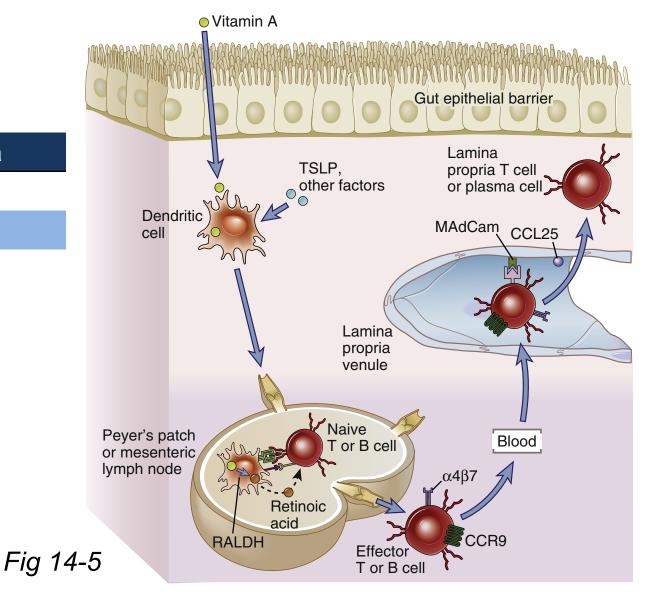
Általában toleranciát indukálnak (IL-10, TGFβ)

DC: retinal dehidrogenázt expresszálnak → retinsavat szekretálnak → intesztinális homing indukálása


Innate lymphoid cells / Veleszületett limfoid sejtek

(ILC1: NK-sejt + non-citotoxikus ILC1)

(ILC2: paraziták elleni immunválasz, allergia)


ILC3: nyirokszövetfejlődés, "mukozális gyógyulás", gyulladás

Innate lymphoid cell (ILC) / Veleszületett limfoid sejt

Mukózális homing

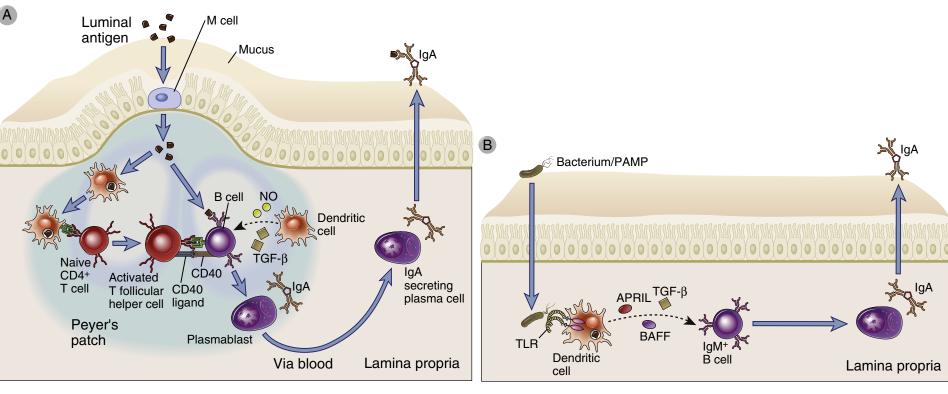
Endothél	Leukocita
MAdCAM-1	α4β7
CCL25	CCR9

Intestinális humorális válasz

```
IgA<sup>+</sup> B-sejtek!!!!

(kevés IgM, IgG...)

Izotípus váltás: T-dependens, de T-independens (!) módon is

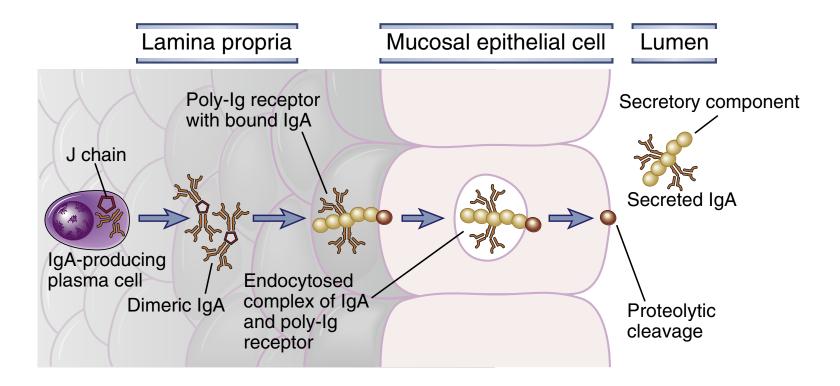

Nagy mennyiségű TGFβ
```

Neutralizáló immunitás: mikróba/toxin epithélsejthez való kötődését/azo való átjutását akadályozza meg

B-sejtek: Limfoid follikulusokban (PP, ILF) és diffúzan a lamina propriában helyezkedhetnek el

IgA: dimer, poly-lg receptor segítségével jut át az epithélsejteken (=transcytosis)

Intestinális humorális válasz


T-dependent IgA production

T-independent IgA production

Fig 14-7

Intestinális humorális válasz

IgA transport

Intesztinális T-sejt válasz

Elhelyezkedés

```
Diffúzan:
          Intraepitheliális limfociták: főleg CD8<sup>+</sup> vagy γδ T-sejtek
          Lamina propria limfociták: főleg CD4<sup>+</sup> effektor/memória sejtek
     Organizált nyirokszövetek:
          Peyer plakk
          Izolált nyiroktüszők
          főleg CD4<sup>+</sup> T-sejtek (Treg, follikuláris helper T-sjejtek)
T-sejtek típusai:
     T<sub>H</sub>17 (~ILC3!)
          IL-17, IL-22 termelés
          Extracelluláris patogének elleni immunválaszban fontos szerep
     T<sub>H</sub>2 (~ILC2!)
          IL-4, IL-13 termelés
          Paraziták elleni immunválaszban fontosak
     Regulatórikus T-sejtek (Treg)
          TGFβ, IL-10 termelés
          Nem-pathogén törzsekkel szemben tolerancia indukálása
```

Intestinális mikrobiom

10¹⁴ sejt (emberi test sejtszámának 10-szerese!)

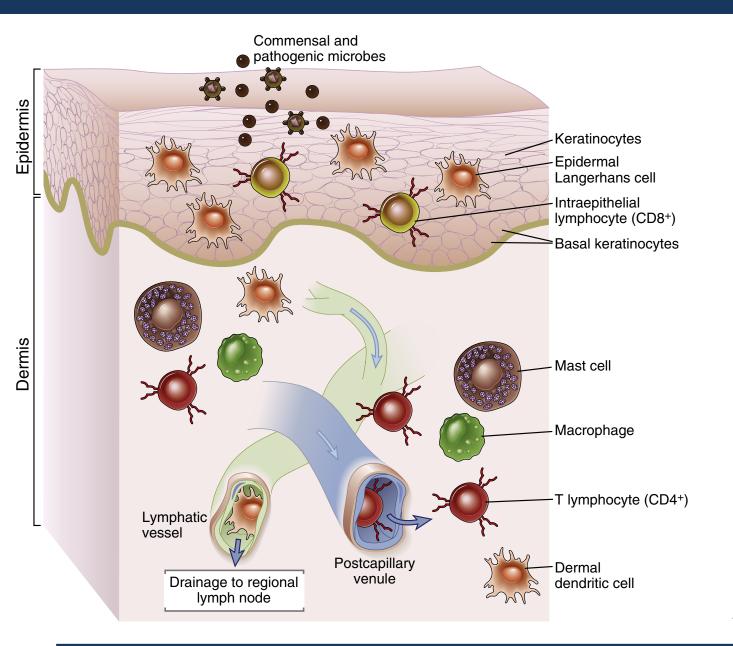
A bél (=lokális) immunválasz mellett a szisztémás immunválaszt is befolyásolják!

Azonosítás: 16S rRNS szekvenálás (baktérium törzsekre specifikus)

Extraintesztinális hatások

Rheumatoid arthritis

Allergiás betegségek (asthma)


Példa:

Clostridium difficile ferőzés: általában antibiotikum használat miatt normál bélflóra károsodása következtében

Terápia: fekális transzplantáció (egészséges donortól származó baktérium flóra)

Bőr immunrendszer

Bőr immunrendszer

2m²
Fizikai barrier
Napégés
Mikróbák
Traumák

Fig 14-9

Bőr immunrendszer sejtjei

Keratinociták

Fizikai barrier

Citokintermelés: TNFα, IL-1, IL-6 (gyulladás); IL-10 (reguláció)

Kemokintermelés: CCL27

Anti-mikrobiális peptidek termelés: defensin, cathelicidin

Akitiváció: PRR által (TLR, NLR)

Dendritikus sejtek

Főleg Langerhans-sejtek

Fagozitózist követően a regionális nyirokcsomóba vándorolnak

T-sejteknek antigént prezentálnak, bőr-homingot indukálnak

T-sejtek

Intraepidermális: főleg CD8⁺ vagy γδ T-sejtek

Dermális: CD4⁺ (T_H1, T_H2, T_H17, T_{req})

Bőrbe való homing

Endothél	Leukocita
E-selectin	CLA
CCL27	CCR10

Fig 14-10