Basic Immunology

15. lecture

Effector functions of immunoglobulins Antigen-antibody reactions IgE mediated immunreactions

B cell development and immunoglobulin expression

			\rightarrow		$c \longrightarrow ($	
Stage of maturation	Stem cell	Pre-B cell	Immature B cell	Mature B cell	Activated B cell	Antibody- secreting cell
Pattern of immunoglobulin production	None	Cytoplasmic µ heavy chain	Membrane IgM	Membrane IgM, IgD	Low-rate Ig secretion; heavy chain isotype switching; affinity maturation	High-rate Ig secretion; reduced membrane Ig

Phases of the Humoral Immune Response

Fig. 11-1

Antibody production

Fig. 11-2

Abbas, Lichtman, and Pillai. Cellular and Molecular Immunology, 7th edition. Copyright © 2012 by Saunders, an imprint of

Changes in the immunoglobulin molecule during the immune response

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Somatic Mutations in Ig V genes \rightarrow affinity maturation

Membrane bound (mlg) and secreted (slg) immunoglobulin 2.

Ig heavy chain isotype switching → development of functional diversity

Helper T cell Activation of B Cells

Functions of immunoglobulins

Monofunctional cell surface Ig (BcR) \rightarrow specific antigen <u>recognition and binding</u> Before the antigen appears.

Polyfunctional secreted Ig →

After the antigen entry in <u>effector functions</u>: immunocomplex formation \rightarrow neutralization, opsonization, complement binding and activation, Fc receptor binding, agglutination, etc. \rightarrow helps to eliminate pathogens before an infection could begin

Immunoglobulins of various isotypes act at different places in the body

Distribution	lgM	lgD	lgG1	lgG2	lgG3	lgG4	lgA	lgE
Transport across epithelium	+	_	-	-	-	-	+++ (dimer)	-
Transport across placenta	-	-	+++	+	++	+/-	-	-
Diffusion into extravascular sites	+/-	-	+++	+++	+++	+++	++ (monomer)	+
Mean serum level (mg ml ^{−1})	1.5	0.04	9	3	1	0.5	2.1	3×10 ⁻⁵

Figure 9-19 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Immungolobulin effector functions

I. <u>Neutralization</u> of the antigen

II. Complement activation

III. <u>Immunocomplex</u> binding to Fc receptor and enhancing phagocytosis (opsonization)

IV. Antibody dependent cell-mediated cytotoxicity (<u>ADCC</u>)

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Immunoglobulins of various isotypes have different functions

Functional activity	lgM	lgD	lgG1	lgG2	lgG3	lgG4	lgA	lgE
Neutralization	+	I	++	++	++	++	++	-
Opsonization	+	-	+++	*	++	+	+	-
Sensitization for killing by NK cells	–	-	++	–	++	–	–	-
Sensitization of mast cells	-	-	+	-	+	-	-	+++
Activates complement system	+++	-	++	+	+++	-	+	-

Figure 9-19 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

NEUTRALIZATION

Neutralization: the antibody can inhibit the binding of bacteria to the host cells

Figure 7.21b

© 2000 Garland Publishing/Elsevier Science

Secretory IgA inhibits binding to mucous membranes

Opsonization by IgG → enhanced phagocytosis IgG & IgM →complement activation → lysis

Antibody-mediated agglutination \rightarrow inhibits entrance into the host tissues

Neutralization of bacterial toxins

Figure 9-24 Immunobiology, 6/e. (© Garland Science 2005)

Diphtheria, Tetanus exotoxin \rightarrow Toxoid (inactivated exotoxin) for vaccination

Diseases caused by bacterial toxins

Disease	Organism	Toxin	Effects in vivo				
Tetanus	Clostridium tetani	Tetanus toxin	Blocks inhibitory neuron action, leading to chronic muscle contraction				
Diphtheria	Corynebacterium diphtheriae	Diphtheria toxin	Inhibits protein synthesis, leading to epithelial cell damage and myocarditis				
Gas gangrene	Clostridium perfringens	Clostridial toxin	Phospholipase activation, leading to cell death				
Cholera	Vibrio cholerae	Cholera toxin	Activates adenylate cyclase, elevates cAMP in cells, leading to changes in intestinal epithelial cells that cause loss of water and electrolytes				
Anthrax	Bacillus anthracis	Anthrax toxic complex	Increases vascular permeability, leading to edema, hemorrhage, and circulatory collapse				
Botulism	Clostridium botulinum	Botulinum toxin	Blocks release of acetylcholine, leading to paralysis				
Whooping	Bordetella	Pertussis toxin	ADP-ribosylation of G proteins, leading to lymphoproliferation				
cough	pertussis	Tracheal cytotoxin	Inhibits cilia and causes epithelial cell loss				
Scarlet	Streptococcus	Erythrogenic toxin	Vasodilation, leading to scarlet fever rash				
fever	pyogenes	Leukocidin Streptolysins	Kill phagocytes, allowing bacterial survival				
Food poisoning	Staphylococcus aureus	Staphylococcal enterotoxin	Acts on intestinal neurons to induce vomiting. Also a potent T-cell mitogen (SE superantigen)				
Toxic-shock syndrome	Staphylococcus aureus	Toxic-shock syndrome toxin	Causes hypotension and skin loss. Also a potent T-cell mitogen (TSST-1 superantigen)				

Figure 9-23 Immunobiology, 6/e. (© Garland Science 2005)

Virus neutralization

Antibody inhibits the binding of the virus to the host cell and the infection:

- -Influenza virus binds to syalic acid residues of cell membrane glycoproteinns
- -Rhinovirus bind to ICAM-1
- -Epstein-Barr virus binds to CR2

Figure 7.21a

Fc-RECEPTOR BINDING

IgG is a flexible molecule

Antigen binding > Conformation change > Complement activation, FcR binding

Flexibility of immunoglobulins with various isotypes Is different.

Activatory and inhibitory role of FcyReceptors

Fc receptors (FcR)

Receptor	FcγRI (CD64)	FcγRII-A (CD32)	FcγRII-B2 (CD32)	FcγRII-B1 (CD32)	FcγRIII (CD16)	Fc∈RI	FcαRl (CD89)	Fc α/μR
Structure	α 72 kDa γ	α 40 kDa			α 50–70 kDa	α 45 kDa β 33 kDa γ9 kDa	α 55–75 kDa γ9 kDa	α 70 kDa
Binding Order of affinity	IgG1 10 ⁸ M ^{−1} 1) IgG1=IgG3 2) IgG4 3) IgG2	IgG1 2×10 ⁶ M ⁻¹ 1) IgG1 2) IgG3=IgG2 [*] 3) IgG4	IgG1 2×10 ⁶ M ⁻¹ 1) IgG1=IgG3 2) IgG4 3) IgG2	IgG1 2×10 ⁶ M ⁻¹ 1) IgG1=IgG3 2) IgG4 3) IgG2	IgG1 5×10 ⁵ M ^{−1} IgG1=IgG3	lgE 10 ¹⁰ M ^{−1}	IgA1, IgA2 10 ⁷ M ⁻¹ IgA1=IgA2	IgA, IgM 3 ×10 ⁹ M ^{−1} 1) IgM 2) IgA
Cell type	Macrophages Neutrophils [†] Eosinophils [†] Dendritic cells	Macrophages Neutrophils Eosinophils Platelets Langerhans' cells	Macrophages Neutrophils Eosinophils	B cells Mast cells	NK cells Eosinophils Macrophages Neutrophils Mast cells	Mast cells Eosinophils† Basophils	Macrophages Neutrophils Eosinophils [‡]	Macrophages B cells
Effect of ligation	Uptake Stimulation Activation of respiratory burst Induction of killing	Uptake Granule release (eosinophils)	Uptake Inhibition of stimulation	No uptake Inhibition of stimulation	Induction of killing (NK cells)	Secretion of granules	Uptake Induction of killing	Uptake

Figure 9-30 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

munobiology, 6/e. (© Garland Science 2005)

Opsonization and Phagocytosis by Antibodies

Opsonization by antibody and complement C3b → FCr and CR mediated phagocytosis

Figure 9-32 Immunobiology, 6/e. (© Garland Science 2005)

Free immunoglobulins cannot bind to Fc receptor and enhance phagocytosis

Antigen bound antibody is capable of binding to FcR

IgG transport from blood to tissues

Figure 7.16

© 2000 Garland Publishing/Elsevier Science

Poly-Ig receptor

IgA/IgM transport

secretory component

The role of Ig constant domains in the effector functions

Receptor	lg domen
C1q binding sites	Cγ2 or Cμ3
FcγRI (CD64) FcγRII (CD32) FcγRIII (CD16) FcαRI (CD89) FcεRI FcεRII (CD23)	Cγ2 Cγ2 and Cγ3 Cγ2 and Cγ3 Cα Cε3 Cε3

FceR -high affinity IgE receptor binds free IgE

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Antigen crosslinking of the receptor activate the signal transduction → mast cell activation

Syk is critical for FceR-mediated Ca2+ mobilization, degranulation, production of cytokines, and arachidonic acid metabolites.

IgE-mediated mast cell activation

Figure 7.24

© 2000 Garland Publishing/Elsevier Science

ADCC = antibody dependent cellular cytotoxicity

Figure 9-34 Immunobiology, 6/e. (© Garland Science 2005)

ADCC

^{© 2000} Garland Publishing/Elsevier Science

Parasite covered by IgE > eosinophil activation > release of toxic granules

COMPLEMENT ACTIVATION

IgG & IgM antigen-antitbody complexes activate complement

Figure 9-28 Immunobiology, 6/e. (© Garland Science 2005)

Antiviral mechanisms of the humoral immune response:

- Secretory IgA inhibits binding of the virus to the host cell and inhibits infection or reinfection
- IgG, IgM & IgA inhibits the fusion of the viral envelope with the host cell
- IgG and IgM opsonization → helps the phagocytosis of virus particles
- IgM agglutination of virus particles
- Complement-activating IgG & IgM further opsonization with C3b, then lysis by MAC