Basic Immunology

Lecture 17

Effector mechanisms of cell-mediated immune responses (CMI):

Innate, natural and adaptive effector lymphocytes

From: Innate and Innate-like Effector Lymphocytes in Health and Disease

https://journals.aai.org/jimmunol/article/209/2/199/234119/Innate-and-Innate-like-Effector-Lymphocytes-in

J Immunol. 2022;209(2):199-207. doi:10.4049/jimmunol.2200074

Effector functions of lymphocyte populations

Types of T Cell–Mediated Immune Reactions

Fig. 10-1

Cell-mediated immune response (CMI)

<u>Cytotoxicity</u>	<u>Th1 mediated</u> <u>macrophage activation</u>
Effector cells direct cytotoxic activity:	Effector cells cytokine production:
 γδ T cells NK cells, Macrohages 	- Macrophages
Target cell (cytosolic antigen): - allogen cells (transplantation minor histocompatibility antigen) - malignant cells - virally infected cells	Antigen in phagolysosome: - intracellular bacterium, fungi, parasite, virus - contact antigens (small molecules (haptén) skin protein complexes)
 malignant cells virally infected cells chemically modified cells 	molecules (haptén) skin prot complexes)

Presentation of intracellular and extracellular antigens

Cytosolic way

Phagolysosomes

Antigen recognition of T and NKT cells

Cytotoxicity

CD8+ T cytotoxic cells
 γδT cells
 NKT and MAIT cells
 NK cells

Antigen recognition of cytotoxic T cells

Activated Tc cells = effector CTL TcRαβ, CD8+ cells Antigen specific recognition with MHC- I restriction

Phases of T Cell Responses

Clonal Expansion of T cells

Fig. 9-12

How CD4⁺ T Cells Help CD8⁺ T Cells

Fig. 9-18

Naive Tc cell activation

Activation of memory CTL doesn't require Th1 help

Memory CTL: autokrin IL-2 production

Naiv CTL: Th1 produces IL-2

Steps of CTL-mediated target cell killing

1. Antigen recognition 2. Conjugation 3. CTL cytoplasmic rearrangement 4. CTL degranulation 5. Target cell apoptosis 6. Dissociation

Mechanisms of CTL induced apoptosis:

Soluble effector molecules: perforins and granzymes

Membrane-bound effector molecules: Fas/Fas ligand (FAS-L)

IV-8-1 T-cell killing

The secretory mechanism of apoptosis

Extrinsic Apoptosis pathway

Cytotoxicity

CD8+ T cytotoxic cells
 γδT cells
 NKT and MAIT cells
 NK cells

Antigen recognition of traditional and unconventional T cell subsets

https://pmc.ncbi.nlm.nih.gov/articles/PMC10804939/

Non-conventional or natural T cell subsets

https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2023.1273459/full

$\gamma\delta$ T cells

- 5 % of the T cells,
- Intraepidermal lymphocytes: CD4- and CD8-
- Intraepithelial lyphocytes: CD8+
- Produced in embryonic life, no recirculation,
- Limited, tissue specific TcR diversity → specialization to respond to certain antigens
- Ligand recognition: non-MHC-retricted, but antigen specific
- Antigens: viral proteins, surface heat-shock proteins (produced in inflammatory responses) bacterial lipids, phosphatids through CD1 molecule
- Function: eliminate damaged cells and microbial invaders

Appearance of the two main human γδ T cell subsets in the circulation

Human γδ T cell development and commitment in the thymus

γδ T cells

 $\gamma\delta$ T cells are most abundant in barrier tissues, including the skin, intestine and lungs

Tissue-specific CR subgroups expressing Vy and V δ combinations are found

Antigen specificity:

 butyrophilin (BTN) protein-bound bacterial phosphoantigens

- CD1, MR1 MHC-I-like proteins: bound antigens

- MIC-A and MIC-B (MHC class I chain linked protein) antigen – recognized by NKG2D KAR receptor

Natural Killer T cells = NKT

- 0,2% of the peripheral T cells
- Positive selection in the thymus on self phospholipid antigens
- Antigen recognition: microbial phospholipids and glycolipids, presented by the non-polymorphic CD1d
- Markers: invariant αβ TcR (iVα24-Jα18) with limited specificity, CD4 or DN or CD8αα + NK markers: NK1.1, CD56, CD16, CD161 (NKRP1)
- Function: fast cytokine production: IL-4, IFNγ, IL-10, IL-13, IL-17, IL- 21 TNFα

	Vα14 NK I	Conventional I		
TCR	invariant V α 14	heterogenous TCR		
Ligand	α-GalCer	peptides		
МНС	monomorphic CD1d	polymorphic MHC		
Major tissues	Liver, Spleen Bone marrow	Thymus, Spleen Lymph nodes		
Development	GM-CSFR	no GM-CSFR		

NKT cell types

	I	П	ш	MAIT cells
Other names	Classic /invariant NKT	Non-classic	-	<u> </u>
TCR repertoire	invariant Vα24-JαQ (Jα18), Vβ11	diverz	diverz	invariant Vα7.2- Jα33
Co-receptors	CD4, DN, CD8αα	CD4, DN	CD4, CD8ασ	DN, CD8αα
NK cell receptor	CD56, CD161	CD56, CD161?	CD56, CD161?	CD161
Antigen presenting molecule	CD1d	CD1d	MHCI and II	MR1
Reactivity	α GalCer, iGb3?, GSL	sulphatide	?	Vitamin B subunits
Occurrence	Liver, thymus, spleen, bone marrow	Liver, spleen	Spleen, bone marrow, liver	Lamina propria, lungs, liver

iNKT cell subgroups – transactivation and polarisation

Cancers 2023, 15(24), 5737; https://doi.org/10.3390/cancers15245737

Role of MAIT cells

MAIT cells are predominantly found in the gastrointestinal tract, mesenteric lymph nodes and liver

Upon encounter with the commensal microbial flora, MAIT cells proliferate and develop a memory phenotype

Important in antimicrobial antibacterial defence, produce cytokines

Recognition of microbially derived B vitamin (e.g. riboflavin) derivatives presented on MR1

Citokines can also activate

Markers: CD3, CD4, CD8, Valfa 7.2 TCR ? PD1, CD28, CD27, produce Granzym B

MAIT cell activation and polarisation

Cytotoxicity

CD8+ T cytotoxic cells
 γδT cells
 NKT and MAIT cells
 NK cells

Natural killer cells (NK)

- 10-15% of lymphocytes = LGL cells
- Phenotype:
- TcR- CD3-, CD4-, CD8+/-, CD2+, CD16+ (FcγRIII) CD56+,
- They secrete cytokines: $INF\gamma \rightarrow immune regulation (Th1)$
- **Function:** *early* response to infection with certain viruses, intracellular bacteria and tumor cells

NK cell receptors

<u>NK-cell receptors:</u> <u>Killer inhibitory receptors</u> <u>(KIR):</u> recognize normal self MHC-I molecules

Killer activatory receptors

(KAR): recognize aberrant glycosylation on tumor or virus infected cell surface

Opposite signal model of NK cell activation

Antibody-dependent cellular cytotoxicity (ADCC)

Figure 9-34 Immunobiology, 6/e. (© Garland Science 2005)

T_H –cell mediated macrophage activation

Delayed type hypersensitivity = DTH

Immuneresponses against intravesicular microorganisms

I. Sensitization:

II. Effector phase

Prolonged DTH – granuloma formation

Miliaris tuberculosis

Prolonged DTH – granuloma formation

TABLE 14-3 INTRACELLULAR PATHOGENS AND CONTACT ANTIGENS THAT INDUCE DELAYED-TYPE HYPERSENSITIVITY

Intracellular bacteria Mycobacterium tuberculosis Mycobacterium leprae Listeria monocytogenes Brucella abortus Intracellular fungi Pneumocystis carinii Candida albicans Histoplasma capsulatum Cryptococcus neoformans Intracellular parasites Leishmania sp.

Intracellular viruses Herpes simplex virus Variola (smallpox) Measles virus Contact antigens Picrylchloride Hair dyes Nickel salts Poison ivy Poison oak

Effect of contact antigens

