Basic immunology

Lecture 3. Innate immunity, pattern recognition

Péter Engelmann

Different levels of the immune response

 Recognition molecules of the innate immunity

The levels of host defense

- Anatomical "barriers"
- Innate immunity, inflammation
- Adaptive immunity

The levels of host defense

- Anatomical "barriers"
- Innate immunity, inflammation
- Adaptive immunity

I. First line of defense: anatomic "barriers"

Intrinsic epithelial barriers to infection Figure 2-4 Immunobiology, 6/e. (© Garland Science 2005)

	Skin	Gut	Lungs	Eyes/nose/oral cavity
Mechanical	Epithelial cells joined by tight junctions			
Weenanica	Longitudinal flow of air or fluid		Movement of mucus by cilia	Tears Nasal cilia
Chemical	Fatty acids	Low pH Enzymes (pepsin)	Pulmonary surfactant	Enzymes in tears and saliva (lysozyme)
	β-defensins Lamellar bodies Cathelicidin	α-defensins (cryptdins) RegIII (lecticidins) Cathelicidin	α-defensins Cathelicidin	Histatins β-defensins
Microbiological	Normal microbiota			

- 1. Mechanical defense
- 2. Slightly acidic environment
- 3. Normal (commensal) microorganisms
- 4. Antimicrobial factors in the body fluids, on the skin / in the gut.

5. Cilia

Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Immunobiology, 2005.

Antimicrobial peptides I

Defensin

Cathelicidin

Nat Rev Immunol. 2003 ;3:710-720. Cell Tissue Res. 2011 ;343:175-88.

Antimicrobial peptides II

The role of epithelial barriers

Defensins, cathelicidins

Mast cells, IEL: $\gamma \delta$ T cells

Abbas, Lichtman, Pillai: Cellular and Molecular Immunology 7th Edition, 2012.

II. Second line of defense: innate immunity, phagocytes, inflammation

- 1. Phagocytes in the blood and tissues.
- 2. Soluble proteins (immunglobulin and complement), bind to microbe surface (opsonisation) to enhance the phagocytosis.

Functions of innate immunity

- The first line of defense against infections-local
- Localisation of microbes and inhibits their spreading
- The effector mechanisms of innate immunity aid the adaptive immunity to eliminate the pathogens
- Activate and influence the adaptive immunity

III. The third line of defense: adaptive immunity

Different levels of the immune response

Recognition molecules of innate immunity

Recognition of pathogens, phagocytosis

Figure 8.8

Janeway CA Jr, Travers P, Walport M, Shlomchik MJ. Immunobiology, 2005.

PRR= "Pattern Recognition Receptors"

→Binding to the PAMPS of microbes
PAMP=,,Pathogen Associated Molecular
Patterns

Process of phagocytosis

Abbas, Lichtman, Pillai: Cellular and Molecular Immunology 7th Edition, 2012

Reactive oxygen/nitrogen intermediers

Antimicrobial species generated from oxygen and nitrogen

Owen, Punt, Stranford : Kuby Immunology 7th Edition, 2013.

Process of NETosis

Nature Reviews | Immunology

NET: neutrophyl extracellular trap

Phagocyte receptors

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Abbas, Lichtman: Cellular and Molecular Immunology 5th Edition, 2005.

Main groups of pattern recognition receptors

Toll-like receptors (TLRs)	Plasma membrane and endosomal membranes of dendritic cells, phagocytes, B cells endothelial cells, and many other cell types	TLRs 1-9	Various microbial molecules including bacterial LPS and peptidoglycans, viral nucleic acids
NOD-like receptors (NLRs)	Cytoplasm of phagocytes epithelial cells, and other cells	NOD1/2 NALP family (inflammasomes)	Bacterial cell wall peptidoglycans Flagellin, muramyl dipeptide, LPS; urate crystals; products of damaged cells
RIG-like receptors (RLRs)	Cytoplasm of phagocytes and other cells	RIG-1, MDA-5	Viral RNA
C-type lectin–like receptors	Plasma membranes of phagocytes	Mannose receptor	Microbial surface carbohydrates with terminal mannose and fructose
00		Dectin	Glucans present in fungal cell walls
Scavenger receptors	Plasma membranes of phagocytes	CD36	Microbial diacylglycerides
N-Formyl met-leu-phe receptors	Plasma membranes of phagocytes	FPR and FPRL1	Peptides containing <i>N</i> -formylmethionyl residues

Pattern recognition receptors: Toll-like receptors (TLR)

Abbas, Lichtman, Pillai: Cellular and Molecular Immunology 7th Edition, 2012.

Trends in Biochemical Sciences 2009; 34: 553-561.

Pattern recognition receptors: NOD-like receptors (NLR)

NOD: Nucleotide oligomerization domain

Pattern recognition receptors: RIG-like receptors (RLR)

Abbas, Lichtman, Pillai: Cellular and Molecular Immunology 7th Edition, 2012.

Soluble pattern recognition molecules I

Collectin (MBL, SP-A, SP-D): Ctype lectin domain Ficolin: Fibrinogen domain

Abbas, Lichtman, Pillai: Cellular and Molecular Immunology 7th Edition, 2012.

Soluble pattern recognition molecules II: pentraxins

Murphy. Janeway's Immunobiology, 8th Edition ,2012.

J Biol Chem. 2004 Nov 19;279(47):48487-90.

Clinical significance of C-reactive protein level

Risk of infection, sepsis

CRP test, complete blood count, blood culture Then start Antibiotics treatment

CRP 48 hr

CRP >10 mg/L, Continue antibiotics therapy

> CRP at 7 days

CRP <10 mg/L & blood culture negative Discontinue antibiotic treatment

CRP <10 mg/L: discontinue antibiotic treatment

CRP >10 mg/L: reevaluate (new blood count, change antibiotics)

Specificity of innate and adaptive immunity

	Innate Immunity	Adaptive Immunity
Specificity	For structures shared by classes of microbes (pathogen- associated molecular pattern s)	For structural detail of microbial molecules (antigens); may recognize nonmicrobial antigens
	Different microbes	Different microbes Distinct antibody molecules
Receptors	Encoded in germline limited diversity (pattern recognition receptors)	Encoded by genes produced by somatic recombination of gene segments; greater diversity
	N-formyl Mannose Scavenger receptor	TCR
Distribution of receptors	Nonclonal: identical receptors on all cells of the same lineage	Clonal: clones of lymphocytes with distinct specificities express different receptors
Discrimination of self and non-self	Yes; healthy host cells are not recognized or they may express molecules that prevent innate immune reactions	Yes; based on elimination or inactivation of self-reactive lymphocytes; may be imperfect (giving rise to autoimmunity)

Abbas, Lichtman, Pillai: Cellular and Molecular Immunology 7th Edition, 2012.

Vaccination and the role of adjuvants

Nobel Laureates in 2011 for medicine and physiology

Jules A. Hoffmann

Bruce A. Beutler

Ralph M. Steinmann