Basic Immunology Lecture 25th - 26th Immunity against tumors

Tumor- and tumor associated antigens. Tumor escape. Trends in immunotherapy against cancer.

Immunological aspects of organ transplantation

Tolerance and graft rejection. Host versus graft and graft versus host reactions. Immunosuppression.

Mass of tumor cells (localized benign tumor) (b)

(d)

(C)

invade blood vessels, allowing metastasis to occur

Tumor cells

Cell surface antigens expressed on tumor cells

- Normal structures without alterations
- Genetically modified (mutated) structures as tumor specific antigens
- Normal structures but expressed in inappropriate differentiation stage as *tumor associated antigens*

Mutation generates new peptide in class I MHC molecule (TSTA) Inappropriate expression of embryonic gene (TATA)

Tumor associated antigens named as tumor markers.

Tumor Specific Antigen

•TSA – mutations of somatic cells induced by chemical carcinogenesis, viruses or x-rays

•Each carcinogenic factor induces a <u>unique and</u> <u>specific class of antigens</u>. NO GENERAL TUMOR SPECIFIC ANTIGEN EGSISTS!

•TSA is recognized (according to the individual MHC haplotype) by the immune system and induces targeting type immune response or tolerance

Tumor Associated Antigen

Products (e.g. hormones, growth factors, cell surface receptors, differentiation molecules etc.) of both normal and altered cells during their differentiation.

Production of <u>TAAs is not related with tumorous</u> <u>transformation exclusively</u>, however, expression profile of TAAs could be characteristic in some tumors, and useful as "tumor markers" in differential diagnosis or in the monitoring of therapeutic efficiency.

Clinical Tumor Markers

Often tumor markers

Tumor markers	Abbreviation	Oncological application
Alfa-foetoprotein	AFP	Liver and germ cell tumors
Cancer antigen 125	CA 125	ovarian tumors
Cancer antigen 15,3	CA 15,3	Breast cancer
Cancer antigen 72,4	CA 72,4	Gastric cancer
Cancer antigen 19,9	CA 19,9	Pancreatic cancer
Carcinoembrional antigen	CEA	Gastrointestinal cancers
Neuronspecific enolase	NSE	Small cell lung cancer
Prostate specific antigen	PSA	Prostate cancer
Squamous cell carcinoma antigen	SCC	Planocellular cancers
Tissue polypeptide antigen	TPA	Urinary bladder and lung cancer
Tissue polypeptide-specific antigen	TPS	Metastatic breast cancer

Immune reactions against tumor cells

T cell mediated (CD8+, CD4+Th1, NK)

macrophage mediated

immunoglobulin mediated (ADCC)

network of cytotoxic cytokines

Cell mediated immunity against malignant tumors

Enhancement of tumor immunity by NKT cells

Tumor escape

- Over expression or down regulation of MHC Class I.
- Over expression of FcR
- Deficiency of cytotoxic cytokine receptors
- Production of different glycoproteins with masking effects
- Expression of co-stimulation inhibitors

Tumor infiltrating macrophages: double-edged sword

Tumor escape according to the local environment

Immature local dendritic cells

(unable to take up, process, or present antigens, and may also be inhibited from migrating to regional lymph nodes or may actually induce tolerance). Regulatory T cells are able to mediate suppression of antigen-primed T cells. The Th2 phenotype CD4 T cells inhibits the initiation of Th1 T cells and effective cellular immunity. The tumor cells may express aberrant MHC class I molecules or β2-microglobulin, resulting in inadequate antigen presentation. Tumor cells and the surrounding stroma may release a number of suppressive cytokines, such as IL-6, IL-10, and TGF-β.

Possible immuno-therapies

- Immuno-targeting with monoclonal antibodies
- Check point inhibitors
- Immunomodulation
- Tumor vaccines
- Oncolytic viruses

Monoclonal antibodies for therapeutic use

Nature Reviews | Cancer

Immunotoxins in cancer therapy

Monoclonal antibodies that bind target cell-surface antigens are themselves non-cytotoxic, but after conjugation with toxins they are able for clinical application in cancer therapy.

Immunotoxin therapy of Hairy Cell Leukemia

Treatment of hairy cell leukemia with recombinant BL22 immunotoxin therapy

Bispecific therapeutic monoclonal antibodies

Mechanism of action of Catumaxomab (the first approved bispecific and és trifuntional antibody). (EpCAM: Epithelial cell adhesion molecule)

APC – T cell checkpoints

Immune checkpoint inhibitors

James P. Allison, PhD Tasuku Honjo, MD, PhD Immunotherapy pioneers have won the 2018 Nobel Prize in Physiology or Medicine for their research that eventually led to the use of immune checkpoint inhibitors to treat cancer.

Immunological aspects of organ transplantation

Cornea

From cadaver Immunosuppression not required 40,000 transplants per year

Lung

From brain-dead donor Procedure recently developed; little data available 845 transplants in 1998 Often heart/lung transplant (45 in 1998)

Heart

From brain-dead donor HLA matching useful but often impossible Risk of coronary artery damage, perhaps mediated by host antibody 2,340 transplants in 1998

Liver

From cadaver Surgical implantation complex Resistant to hyperacute rejection Risk of GVHD 4,450 transplants in 1998

Bone marrow

Needle aspiration from living donor Implanted by IV injection ABO and HLA matching required Rejection rare but GVHD a risk

Skin

Mostly autologous (burn victims) Temporary grafts of nonviable tissue Allogeneic grafts rare, require immunosoppression

Blood

Transfused from living donor ABO and Rh matching required Complications extremely rare An estimated 14 million units used each year

Pancreas

From cadaver Islet cells from organ sufficient 253 transplants in 1998 Increasingly, panreas/kidney transplant for advanced diabetes (965 in 1998)

Kidney

From live donor or cadaver ABO and HLA matching useful Immunosuppression usually required Risk of GVHD very low 11,900 transplants in 1998

Average survival rate of transplanted patients in US in 2015

TRANSPLANT PATIENT SURVIVAL RATES

1 YEAR 90.4%	1 YEAR 90.5%	1 YEAR 97.2%	1 YEAR 85.2%
3 YEAR 83.3%	3 YEAR 83.4%	3 YEAR 93.3%	3 YEAR 67.3%
5 YEAR 76.8%	5 YEAR 77.8%	5 YEAR 87.7%	5 YEAR 55.2%

autolog, allogeneic, xenogeneic graft

auto-, allo-, xeno-transplantation

Allograft rejection

Graft acceptance and rejection

(a) Autograft acceptance Grafted epidermis

Days 3-7: Revascularization

Days 7-10: Healing

Days 12-14: Resolution

(b) First-set rejection Grafted epidermis

Days 3-7: Revascularization

Days 7-10: Cellular infiltration

Days 10-14: Thrombosis and necrosis

(c) Second-set rejection Grafted epidermis

Days 3-4: Cellular infiltration

Days 5-6: Thrombosis and necrosis

Host versus graft reaction

- <u>hyperacute</u> rejection caused by preexisting antibodies
- <u>acute</u> rejection managed by T cells, ADCC and DTH
- <u>chronic</u> rejection induced by permanent endothelial injuries and complement activation

Mechanisms of host versus graft reactions

Hyperacute rejection

Acute rejection

Chronic rejection

Graft versus host reaction

acute GVHD (acute tissue necrosis of the targeted organs)

chronic GVHD (autoimmune-like phenomenon)

Bone marrow transplantation

Advantage	Disadvantage	
Autologous	Allogeneic	
no GVH	GVH	
no rejection	rejection	
no matching needed	need matching	
	tumour in donor cells	
Allogeneic	Autologous	
no tumour transfer	grafting tumour cells	
graft vs. tumour	(myelosuppression	
myelosuppression avoided	possible)	

Immunosuppression

Cyclosporine A

Tacrolimus

Sirolimus

Blocking co-stimulatory signals

T cells that recognize graft antigens become activated

Graft rejected

T cells that recognize graft antigens lack co-stimulation and become anergic

Graft survives

Co-stimulation inhibition by Abatacept

