Basic Immunology

15. lecture

Effector functions of immunoglobulins. Antigen-antibody reactions. IgE mediated immunreactions.

B cell development and immunoglobulin expression

					$c \longrightarrow ($	
Stage of maturation	Stem cell	Pre-B cell	Immature B cell	Mature B cell	Activated B cell	Antibody- secreting cell
Pattern of immunoglobulin production	None	Cytoplasmic µ heavy chain	Membrane IgM	Membrane IgM, IgD	Low-rate Ig secretion; heavy chain isotype switching; affinity maturation	High-rate Ig secretion; reduced membrane Ig

Phases of the humoral immune response

Antitest termelés

Fig. 11-2

Membrane bound (mlg) and secreted (slg) immunoglobulin 2.

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Changes in the immunoglobulin molecule during the immune response

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Isotype switch – development of functional diversity

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Helper T cell - B cell interaction

Abbas et al: Basic Immunology, 4e Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

Functions of immunoglobulins

Monofunctional cell surface Ig (BcR) \rightarrow specific antigen recognition and binding *Before* the antigen appears.

Polyfunctional secreted Ig →

After the antigen entry in <u>effector functions</u>: immunocomplex formation \rightarrow neutralization, opsonization, complement binding and activation, Fc receptor binding, agglutination, etc. \rightarrow helps to eliminate pathogens before an infection could begin

Immunoglobulins of various isotypes act at different places in the body

Distribution	lgM	lgD	lgG1	lgG2	lgG3	lgG4	lgA	lgE
Transport across epithelium	+	-	1	-	-	-	+++ (dimer)	-
Transport across placenta	-	-	+++	+	++	+	Ι	-
Diffusion into extravascular sites	+/-	-	+++	+++	+++	+++	++ (monomer)	+
Mean serum level (mg ml ^{−1})	1.5	0.04	9	3	1	0.5	2.1	3×10⁻⁵

Figure 9-19 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Serum ELFO

Alb	Albumin
α1	Alpha-1
α_2	Alpha-2
β1 β2	Beta-1 Beta-2
γ	Gamma
GC	Vitamin D binding globulin
AT3	Antithrombin III
PL	Plasminogen
αLp	Alphalipoprotein
Hpt	Haptoglobin
Clq	q component of C1 complement
CRP	C-reactive protein
α ₁ -Ac	Alpha-1-antichymotrypsin
αıAt	Alpha-1-antitrypsin
α_2 -M	Alpha-2-macroglobulin
Tf	Transferrin
C3	C3 complement
Fibr	Fibrinogen
PreA	Prealbumin
α ₁ -Ag	Alpha-1-acid glycoprotein
β-Lip	Betalipoprotein
IaTI	Inter-alpha-trypsin inhibitor
C4	C4 complement
IgM	Immunoglobulin M
ClInh	C1 inhibitor
C5	C5 complement
Cls	s component of C1 complement
Hpx	Hemopexin
IgA	Immunoglobulin A
IgD(E)	Immunoglobulin E
Cer	Ceruloplasmin
Fn	Fibronectin
IgG	Immunoglobulin G
Clr	r component of C1 complement
FB	Factor B

*Adapted from Laurell, C-B (11).

Immungolobulin effector functions

I. <u>Neutralization</u> of the antigen

II. Complement activation

III. <u>Immunocomplex</u> binding to Fc receptor and enhancing phagocytosis (opsonization)

IV. Antibody dependent cell-mediated cytotoxicity (<u>ADCC</u>)

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Immunoglobulins of various isotypes have different functions

Functional activity	lgM	lgD	lgG1	lgG2	lgG3	lgG4	lgA	lgE
Neutralization	+	-	++	++	++	++	++	-
Opsonization	+	-	+++	*	++	+	+	-
Sensitization for killing by NK cells	Ι	-	++	-	++	Ι	Ι	-
Sensitization of mast cells	-	-	+	-	+	-	-	+++
Activates complement system	+++	-	++	+	+++	-	+	-

Figure 9-19 part 1 of 2 Immunobiology, 6/e. (© Garland Science 2005)

NEUTRALIZATION

Neutralization: the antibody can inhibit the binding of bacteria to the host cells

Figure 7.21b

© 2000 Garland Publishing/Elsevier Science

Secretory IgA inhibits binding to mucous membranes

Opsonization by IgG → enhanced phagocytosis IgG & IgM →complement activation → lysis

Antibody-mediated agglutination \rightarrow inhibits entrance into the host tissues

Neutralization of bacterial toxins

Figure 9-24 Immunobiology, 6/e. (© Garland Science 2005)

Diphtheria, Tetanus exotoxin \rightarrow Toxoid (inactivated exotoxin) for vaccination

Diseases caused by bacterial toxins

Disease	Organism	Toxin	Effects in vivo		
Tetanus	Clostridium tetani	Tetanus toxin	Blocks inhibitory neuron action, leading to chronic muscle contraction		
Diphtheria	Corynebacterium diphtheriae	Diphtheria toxin	Inhibits protein synthesis, leading to epithelial cell damage and myocarditis		
Gas gangrene	Clostridium perfringens	Clostridial toxin	Phospholipase activation, leading to cell death		
Cholera	Vibrio cholerae	Cholera toxin	Activates adenylate cyclase, elevates cAMP in cells, leading to changes in intestinal epithelial cells that cause loss of water and electrolytes		
Anthrax	Bacillus anthracis	Anthrax toxic complex	Increases vascular permeability, leading to edema, hemorrhage, and circulatory collapse		
Botulism	Clostridium botulinum	Botulinum toxin	Blocks release of acetylcholine, leading to paralysis		
Whooping	Bordetella	Pertussis toxin	ADP-ribosylation of G proteins, leading to lymphoproliferation		
cough	pertussis	Tracheal cytotoxin	Inhibits cilia and causes epithelial cell loss		
Scarlet	Streptococcus	Erythrogenic toxin	Vasodilation, leading to scarlet fever rash		
fever	pyogenes	Leukocidin Streptolysins	Kill phagocytes, allowing bacterial survival		
Food poisoning	Staphylococcus aureus	Staphylococcal enterotoxin	Acts on intestinal neurons to induce vomiting. Also a potent T-cell mitogen (SE superantigen)		
Toxic-shock syndrome	Staphylococcus aureus	Toxic-shock syndrome toxin	Causes hypotension and skin loss. Also a potent T-cell mitogen (TSST-1 superantigen)		

Figure 9-23 Immunobiology, 6/e. (© Garland Science 2005)

Virus neutralization

Antibody inhibits the binding of the virus to the host cell and the infection:

- -Influenza virus binds to syalic acid residues of cell membrane glycoproteinns
- -Rhinovirus bind to ICAM-1
- -Epstein-Barr virus binds to CR2

Figure 7.21a

Antiviral mechanisms of the humoral immune response:

- Secretory IgA inhibits binding of the virus to the host cell and inhibits infection or reinfection
- IgG, IgM & IgA inhibits the fusion of the viral envelope with the host cell
- IgG and IgM opsonization → helps the phagocytosis of virus particles
- IgM agglutination of virus particles
- Complement-activating IgG & IgM further opsonization with C3b, then lysis by MAC

Fc-RECEPTOR BINDING

IgG is a flexible molecule

Antigen binding > Conformation change > Complement activation, FcR binding

Flexibility of immunoglobulins with various isotypes Is different.

Fc receptors (FcR)

Receptor	FcγRI (CD64)	FcγRII-A (CD32)	FcγRII-B2 (CD32)	FcγRII-B1 (CD32)	FcγRIII (CD16)	FceRI	FcαRl (CD89)	Fc α/μR
Structure	γ	α 40 kDa			α 50–70 kDa	α 45 kDa β 33 kDa γ9 kDa	α 55–75 kDa γ9kDa	α 70 kDa
	L ' 🛍	ο γ-like domain	🗍 ІТІМ	N ∎ITIM				1
Binding Order of	lgG1 10 ⁸ M ^{−1} 1) lgG1=lgG3 2) lgG4	lgG1 2×10 ⁶ M ^{−1} 1) lgG1 2) lgG3=lgG2 [*]	IgG1 2×10 ⁶ M ⁻¹ 1) IgG1=IgG3 2) IgG4	lgG1 2×10 ⁶ M ^{−1} 1) lgG1=lgG3 2) lgG4	lgG1 5×10 ⁵ M ⁻¹ lgG1=lgG3	IgE 10 ¹⁰ M ^{−1}	IgA1, IgA2 10 ⁷ M ⁻¹ IgA1=IgA2	IgA, IgM 3 ×10 ⁹ M ^{−1} 1) IgM 2) IgA
aminty	3) IgG2	3) IğG4	3) IgG2	3) IgG2	NK cells Eosinophils Macrophages Neutrophils Mast cells	Mast cells Eosinophils† Basophils	Macrophages Neutrophils Eosinophils [‡]	Macrophages B cells
					Induction of killing (NK cells)	Secretion of granules	Uptake Induction of killing	Uptake

munobiology, 6/e. (© Garland Science 2005)

Activatory and inhibitory role of FcγReceptors

The role of Ig constant domains in the effector functions

Receptor	lg domen
C1q binding sites	Cγ2 or C μ3
FcγRI (CD64)	Сү2
FcγRII (CD32)	Cy2 and Cy3
FcγRIII (CD16)	Cγ2 and Cγ3
FcαRI (CD89)	Cα
FcεRI	Cε3
FcεRII (CD23)	Cε3

Opsonization and Phagocytosis by Antibodies

	Opsonization of microbe by IgG	Binding of opsonized microbes to phagocyte Fc receptors (FcγRI)	C receptor signals activate phagocyte	hagocytosis of microbe	Killing of ingested microbe	
(Phagocyte B Fc Receptor	Affinity for Ig	Cell distribution	n Functio	1	
	FcγRI (CD64)	High (K _d ~10 ⁻⁹ M); binds IgG1 and IgG3; can bind monomeric IgG	Macrophages, neutrophils; also eosinophils	Phagocyt activation phagocyt	osis; of es	
	FcγRIIA (CD32)	Low (K _d ~0.6–2.5×10 ⁻⁶ M)	Macrophages, neutrophils; eosinophils, plate	Phagocyt activation lets	osis; cell (inefficient)	
	FcγRIIB (CD32)	Low (K _d ~0.6–2.5×10 ⁻⁶ M)	B lymphocytes, DCs, mast cells, neutrophils, macrophages	Feedback of B cells inflamma	c inhibition , attenuation of tion	
	FcyRIIIA (CD16)	Low (K _d ~0.6–2.5×10 ⁻⁶ M)	NK cells	Antibody- cellular cy (ADCC)	dependent vtotoxicity	
Fig. 12-4	FceRI	High (K _d ~10 ⁻¹⁰ M); binds monomeric IgE	Mast cells, basop eosinophils	hils, Activation of mast c	n (degranulation) ells and basophils	

Abbas et al: Basic Immunology, 4e

Copyright © 2014, 2011, 2009, 2006, 2004, 2001 by Saunders, an imprint of Elsevier Inc

Saunders, an imprint o

© 2000 Garland Publishing/Elsevier Science

IgA/IgM transport

secretory component

High affinity IgE receptor (FcεR) binds free IgE

Antigen crosslinking of the receptor activate the signal transduction \rightarrow mast cell activation

Syk is critical for FceR-mediated Ca2+ mobilization, degranulation, production of cytokines, and arachidonic acid metabolites.

IgE-mediated mast cell activation

Figure 7.24

© 2000 Garland Publishing/Elsevier Science

ADCC = antibody dependent cellular cytotoxicity

Figure 9-34 Immunobiology, 6/e. (© Garland Science 2005)

ADCC

ADCC

^{© 2000} Garland Publishing/Elsevier Science

Parasite covered by IgE > eosinophil activation > release of toxic granules

COMPLEMENT ACTIVATION

IgG & IgM antigen-antitbody complexes activate complement

Figure 9-28 Immunobiology, 6/e. (© Garland Science 2005)