Basic Immunology

Initial phase of the immune response: T cell activation, CD3 complex and signaling. Costimulation. Peripheral T cell differentiation.

Ferenc Boldizsar

Main stages of the adaptive immune response

Antigen transport to the secondary lymphoid organs

- **DCs** 1. periphery, ag take-up, processing
 - 2. migration to T-dependent areas of secondary lymphoid organs (through afferent lymphatics)
 - 3. ag presented on MHC-II to T cells in secondary lymphoid organs (lymph nodes, spleen)
- Native ag lymph drainage to local lymph node or blood

T cell recirculation

Regulation of T cell recirculation

T cell activation

The first antigen recognition encounter of naïve T cells with the APC is called "*priming*".

2 signals are necessary for T cell activation

1. signal: TCR-CD3 complex Antigen-specific

2. signal: costimulatory signal CD28 - B7 interaction Not antigen specific

T cell differentiation and proliferation

Effector and memory T cells

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

The immunological synapse (A. Kupfer, M. Dustin)

=activation interface between the T cell and APC

SMAC=supramolecular activation complex

•Central (c) - TcR complex, CD4, CD28

•Peripheral (p) - adhesion molecules eg. LFA-1

CD45 exclusion

The immunological synapse

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

1. Resting cell antigen recognition receptors outside of rafts

2.Antigen binding→ receptor oligomerization →raft association

3.Raft clustering development of the immunological synapse

M. Dykstra, A. Cherukuri, S.K. Pierce: Rafts and synapses in the spatial organization of immune cell signaling receptors J. Leukoc. Biol. 70: 699–707; 2001.

Lipid rafts=cholesterol&sfingolipid containing membrane microdomains - more "rigid", than other membrane regions \rightarrow provide optimal platform for the immunoreceptor signaling molecules (10-200nm)

TcR signaling - early steps

- 1. After TcR cross linking coreceptors (CD4, CD3, CD45) associate to TcR
- 2. Protein tirosine kinase (PTK) Lck and Fyn activation: CD45 phosphatase removes an inhibitory phosphate
- 3. Fyn and Lck phosphorylates ITAMs of the CD3 complex
- 4. ZAP-70 PTK "docks" to the phosphorylated ITAMS of the *ζ*-chain and phosphorylates

- 1. Antigen recognition
- 2. PTK activation
- 3. Ca²⁺ signal
- 4. Protein phosphorylation
- 5. Translocation of transcription factors
- 6. Gene activation

Kinetics of T cell activation

TABLE 10-3 TIME COURSE OF GENE EXPRESSION BY T_H CELLS FOLLOWING INTERACTION WITH ANTIGEN

Gene product	Function	Time mRNA expression begins	Location	Ratio of activated to nonactivated cells
	Imr	nediate		
c-Fos	Protooncogene; nuclear-binding proteir	15 min	Nucleus	> 100
c-Jun	Cellular oncogene; transcription factor	15-20 min	Nucleus	\$
NF-AT	Transcription factor	20 min	Nucleus	50
c-Myc	Cellular oncogene	30 min	Nucleus	20
NF-ĸB	Transcription factor	30 min	Nucleus	> 10
	E	arly		
IFN-γ	Cytokine	30 min	Secreted	> 100
IL-2	Cytokine	45 min	Secreted	> 1000
Insulin receptor	Hormone receptor	1 h	Cell membrane	3
IL-3	Cytokine	1-2 h	Secreted	> 100
TGF-β	Cytokine	<2 h	Secreted	> 10
IL-2 receptor (p55)	Cytokine receptor	2 h	Cell membrane	> 50
TNF-β	Cytokine	1-3 h	Secreted	> 100
Cyclin	Cell-cycle protein	4-6 h	Cytoplasmic	> 10
IL-4	Cytokine	<6 h	Secreted	> 100
IL-5	Cytokine	<6 h	Secreted	> 100
IL-6	Cytokine	<6 h	Secreted	> 100
c-Myb	Protooncogene	16 h	Nucleus	100
GM-CSF	Cytokine	20 h	Secreted	?
]	Late		
HLA-DR	Class II MHC molecule	3-5 days	Cell membrane	10
VLA-4	Adhesion molecule	4 days	Cell membrane	> 100
VLA-1, VLA-2, VLA-3, VLA-5	Adhesion molecules	7-14 days	Cell membrane	> 100, ?, ?, ?

SOURCE: Adapted from G Crabtree, Science 243:357.

Main consequences of T cell activation 1. Clonal proliferation (expansion) – IL-2mediated autocrine signaling; CD25

2. Peripheral T helper cell differentiation/polarization – different functional subgroups based on cytokine production → regulation of the immune response

3. CTLA-4 expression – stopping of the activation

Autocrine IL-2 effect - CD25 (IL-2Ra chain)

Peripheral helper T cell differentiation

Lineage:	Inducer —	Transcription —	> Cytokine	
		Factor	production	
Th1	IL-12 (Stat-4)	T-bet	IL-2, TNF, IFN γ	
Th2	IL-4 (Stat-6)	GATA-3	IL-4,5,6,13	
Th17	TGFβ, IL-6,-21,-23	RORγt	IL-17	
Treg	TGFβ, IL-2	FoxP3	IL-10, TGF β	

Peripheral helper T cell differentiation

Fig. 9-

13

T_H1, T_H2, and T_H17 Subsets of CD4⁺ T Cells

Abbas, Lichtman, and Pillai. Cellular and Molecular Immunology, 7th edition. Copyright © 2012 by Saunders, an imprint of

Role of CD28 and CTLA-4 molecules in T cell activation

CTLA-4 binds B7 with higher affinity than CD28.

Therapeutic possibility: Inhibition of abnormal T cell activation in autoimmune diseases

CTLA-4-Ig (Abatacept) Rheumatoid Arthritis (RA) therapy

T cell signaling as "target"

Name	Target	Effect	Application
Anti-CD3 (OKT3)	CD3	T cell depletion	transplantation
Anti-CD25 (Daclizumab)	CD25	T cell suppression	transplantation
Cyclosporin A Tacrolimus	calcineurin calcineurin	T cell suppression T cell suppression	transplantation transplantation
CTLA-4-lg (Abatacept)	B7	T cell suppression	RA
Anti-CTLA-4* (Ipilimumab)	CTLA-4	blocking T cell suppression	cancer immunotherapy
Anti-PD-1* (Nivolumab)	PD-1	blocking T cell suppression	cancer immunotherapy
Anti-PD-L1* (Atezolimumab)	PD-L1	blocking T cell suppression	cancer immunotherapy

*checkpoint inhibitors