MALT, SALT and Microbiota

Dr. Berki Timea

External skin surface: "dry body surface" <u>1.7 - 1.8 m²</u>

Internal mucosal surface: "wet body surface" 400 m²

Two types of body surfaces

Skin associated immune system (SIS or SALT)

Special structural elements:

- <u>Antigen presenting cells</u> (Langerhans cells, veiled cells, monocytes, tissue macrophages)
- <u>Effector cells</u> (gamma-delta T cells, alpha-beta T cells, B cells, NK cells, granulocytes, mast cells),
- Keratinocytes (cytokine production).

The co-operation between keratinocytes and T cells is similar to the thymus epithelia and thymocyte co-operations.

Role of the epithelial Barrier

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Cytokines produced by human keratinocytes

Interleukines	IL-1α, IL-1β, IL-6, IL-8
Colony stimulating factors	IL-3, GM-CSF, G-CSF, M- CSF
Interferons	IFN-α, IFN-β
Cytotoxic cytokines	TNF-α
Transforming growth factors	TGF- α , TGF- β
Growth factors	PDGF, fibroblast GF

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Afferent immunreaction is local

Effector response is <u>systemic</u>

Figure 10-20 Immunobiology, 6/e. (© Garland Science 2005)

CLA: cutaneous-lymphocyte associated antigen

Role of epithelium in MALT

© Elsevier 2005. Abbas & Lichtman: Cellular and Molecular Immunology 5e www.studentconsult.com

Nature Reviews | Immunology

Antigen uptake:

M cells epithel cells Dendritic cells

Nature Reviews | Immunology

Role of IEL

Nature Reviews | Immunology

(a) Structure of secretory IgA

Role of intestinal regulatory cells in the development of oral tolerance

MucosalImmunology

Figure 3

12) 5, 232-239; 1038/mi.2012.4

The Human Microbiome

The Human Microbiome is the collection of all the microorganisms living in association with the human body. These communities consist of a variety of microorganisms including eukaryotes, archaea, bacteria and viruses.

Bacteria in an average human body number ten times more than human cells, for a total of about 1000 more genes than are present in the human genome. Because of their small size, however, microorganisms make up only about 1 to 3 percent of our body mass (that's 2 to 6 pounds of bacteria in a 200-pound adult).

http://hmpdacc.org/

The Human Microbiome (cont.)

These microbes are generally not harmful to us, in fact they are essential for maintaining health. For example, they produce some vitamins that we do not have the genes to make, break down our food to extract nutrients we need to survive, teach our immune systems how to recognize dangerous invaders and even produce helpful anti-inflammatory compounds that fight off other diseasecausing microbes.

An ever-growing number of studies have demonstrated that changes in the composition of our microbiomes correlate with numerous disease states, raising the possibility that manipulation of these communities could be used to treat disease.

http://hmpdacc.org/

Protective functions	Structural functions	Metabolic functions	
Pathogen displacement Nutrient competition Receptor competition Production of anti-microbial factors e.g., bacteriocins, lactic acids	Barrier fortification Induction of IgA Apical tightening of tight junctions Immune system development	Control IEC differentiation and proliferation Metabolize dietary carcinogens Synthesize vitamins e.g., biotin, folate	Ferment non-digestible dietary residue and endo- genous epithelial-derived mucus Ion absorption Salvage of energy
Commensal bacteria	IgA IgA	Short-chain fatty acids	Mg ²⁺ Vitamin K Ca ²⁺ Biotin Fe ²⁺ Folate

Intestinal microbiota: Who is there?

- All mucosal surfaces are colonised with bacteria
- The intestine is a preferred site over 70% of all bacteria are found in the colon

 large organ
 - rich in nutrients
- Longitudinal: bacteria increase in number and composition changes from proximal to distal GI tract

Intestinal microbiota: Where are they?

 Latitudinal: bacterial composition also differs between lumen, mucus, and attached to epithelium

Intestinal microbiota in infants

Throughout the human lifetime, the intestinal microbiota performs vital functions, such as: barrier function, metabolic reactions, trophic effects, and maturation of the host's innate and adaptive immune responses.

Development of the intestinal microbiota in infants is characterized by rapid and large changes in microbial abundance, diversity, and composition. These changes are influenced by medical, cultural, and environmental factors such as:

mode of delivery, diet, familial environment, diseases, and therapies used.

Impact of external factors on the intestinal microbiota of the infant: Mom matters

Figure 1. Impact of external factors on the intestinal microbiota of the infant. Green arrows show beneficial modification; red arrows show modification considered negative for healthy development.

Intestinal microbiota: Where do they come from?

- Initial exposure occurs during passage through birth canal
- During first year of life, heavily influenced by mother and environment

Intestinal microbiota: Where do they come from?

- Microbial stability is established after 1 year
- Composition continues to be influenced by environment; antibiotics, diet, genetics, inflammation, hygiene, lifestyle

Intestinal microbiota in health

- Increases the metabolic capacity of the host.
 - Digestion of otherwise unused food components.

(eg Vitamin K)

Acetic acid (acetate)

Propionic acid (propionate)

Butyric acid (butyrate)

Production of short chain fatty acids

Completion of the bile-salt cycle

Protect the host from colonization with pathogenic bacteria (Colonization resistance)

Gut microbiota in disease: Allergic disease

- Massive increase in prevalence of allergic diseases in Westernized countries (>20% over 10 year period)
- Allergic disease is attributed to both genetic predisposition and environmental factors
- Genetic drift over such a short period of time cannot explain increased incidence of disease
- Westernized life-style has introduced several environmental risk factors that disturb the homeostatic balance of gut microbiota
 - Excessive antibiotic use, especially during early life (or even during pregnancy)
 - Shift towards more formula-fed babies
 - Shift towards greater numbers of babies born via Caesarean section
 - Western diet

Pathogen bacteria cause inflammation in the gut wall

Gut microbiota in disease: Food allergy

- Certain types of bacteria produce SCFAs, which can drive induction of regulatory T cells
- Certain types of bacteria promote IL-22 production by CD4+ and ILC, which promotes barrier protection

Table 1. Prevalence of food allergies in adults and children30		
Food	Prevalence (%)	
Young children		
Cow's milk	2.5	
Egg	1.3	
Peanut	0.8	
Soy	0.4	
Tree nut	0.2	
Shellfish	0.1	
Adults		
Shellfish	2	
Peanut	0.6	
Tree nut	0.5	
Fish	0.4	

Table 2. Clinical features of IgE-mediated food allergy					
Local oral & orbital	Dermatological	Gastrointestinal	Respiratory	Systemic	
Itching of palate/lips	Acute urticaria	Nausea	Nasal itching	Hypotension	
Swelling of lips/ tongue	Flushing	Abdominal pain	Rhinorrhoea & nasal obstruction		
Eye itching, redness and watering	Angioedema	Vomiting	Sneezing		
Periorbital oedema	Exacerbation of existing eczema	Diarrhoea	Laryngospasm		
	Morbiliform rash	1	Dyspnoea, wheeze		

Table 3. Food groups cross reacting with pollens in Oral Allergy Syndrome(adapted from ref22)

Pollen	Allergen	Associated cross-reacting Oral Allergy Syndrome triggers
Birch	Bet v 1	Apple, peach, plum, cherry, apricot, almond, carrot, celery, parsley, hazelnut (also possible soy and peanut systemic allergy)
Ragweed	amb a allergen group	Melon, cucumber, zucchini, banana, kiwi
Mugwort	art v 1	Celery, carrot, parsley, peppers, mustard, cauliflower, broccoli, garlic, onion
Orchard Grass	dac g allergen group	Melon, peanut, potato, tomato
Timothy Grass	Phl p allergen group	Swiss chard, orange