Epidemiology of allergies, laboratory diagnostic methods

Allergology 2018/II week

Timea Berki

Atopy-allergy

- Atopy: The European Academy of Allergology and Clinical Immunology (EAACI) defines atopy as "a personal or familial tendency (genetic predisposition) to produce IgE antibodies in response to low doses of allergens, usually proteins, otherwise harmless environmental substances
- The term 'atopy' (Greek atopos meaning out of place)
- Atopic individuals may or may not have symptoms of allergy, but are genetically predisposed to develop one or more ADs (i.e., allergic rhinitis [AR], hayfever, asthma, atopic eczema and certain food allergies) and have a strong familial basis.
- Positive skin test without symptoms
- Allergy: as a consequence, to develop typical symptoms such as asthma, rhinoconjunctivitis or the atopic eczema/ dermatitis syndrome (AEDS).

Prevalence of allergy

- According to recent data, worldwide prevalence of allergy ranges from 30 to 40\%.
- In Europe and the USA, approximately half of the population is said to be either suffering from allergy or already sensitized to one or more allergens. ${ }^{[5,6]}$
- ADs are more prevalent in children as compared with adults.
- According to the ISAAC Phase III study, every third child (<18 years of age) is allergic to one or other allergens. ${ }^{[7]}$
- The prevalence of AD in developed societies has doubled in the past two decades and is increasing rapidly in developing countries (e.g., India), which were previously considered low endemic zones for allergy.

Increasing tendency of allergic diseases in the last 50 years

The International Study of Asthma and Allergies in Childhood noted the of rhinitis with itchy watery eyes, in six to seven year olds as 0.8 to 14.9 percent and in 13-14 year olds from 1.4 to 39.7%.

© Hodder Arnold / Scott-Brown 7E

Prevalence of Asthma and Allergic Disease in Finnish Men

Holrate Church and I ichtenstain: Allerov 3rd adition P) 2006 Flsevier Itd

Age and the development of the different typse of allergies

- Food allergy and eczema: early childhood
- Asthma is biphasic: childhood and the thirties
- Rhinitis between 10-30 years

Symptom Severity Versus Age

Symptom Severity Versus Time

Holgate, Church and Lichtenstein: Allergy 3rd edition © 2006 Elsevier Ltd
ADs are believed to be caused by a combination of both environmental and genetic factors, each accounting for approximately 50% of risk of susceptibility. ${ }^{[4]}$

Causes of Allergy

Th2 mediated allergic inflammation.

Factors predisposing allergy

Medscape

Environmental factors:
 Allergic sensitization
 Western lifestyle
 Excessive hygiene
 Excessive antibiotics
 Stable intestinal microflora
 Single child in family
 Low helminth burden Vaccination

Environmental
triggers:
Allergen
Infections
Air pollution
Smoking

target organs:
Respiratory epithelium
Gut epithelium
Epidermis

Risk factors

Genetics and family history

- The best established risk factor for allergic rhinitis is a family history of allergy, especially of allergic rhinitis.
- Genes which appear to be involved in atopy include an area on the 5 q chromosome.
- Other possible susceptibility loci exist on chromosome 11q, chromosome 13 in the Japanese population and chromosome 12 q .

Environment-

Lifestyle changes, increased exposure to allergen, pollution and irritants, dietary modifications leading to a reduction in Th 1-type immune response and stress.

- Pollution increases symptomatic rhinitis.
- Living in developed countries, pollution, climate interaction and good hygiene all seem to be risk factors.
Co-morbidities-
Conditions associated with allergic rhinitis are asthma, sinusitis, otitis media, sleep disorders, LRTI \& dental occlusion.

Risk Factors for Allergic Rhinitis

* Development of allergic diseases in atopic individuals is due to

Environmental factors

Gene-environment interactions

- Family history of allergy is single most important factor predisposing a child to development of allergic disease
-50% with one parent having atopy
-66% with both parents having atopy
85% have similar allergy like parents
- Other Risk Factors
-small family size
-early use of antibiotics
-western lifestyle
-dietary factors
-passive smoke exposure
-Atopic dermatitis
-High serum IgE levels at 6 years of age

Risk factors

1. Genetic susceptibility:
2. Family history of atopy: e.g. asthma,eczema,hay fever,urticaria
(Genes involved in atopy - loci on $5 \mathrm{q}, 11 \mathrm{q}$ and 12 q chromosomes)
3. Environmental factors:

- Pollution-climate interaction
- Irritants
eg. fumes, tobacco smoke, diesel exhaust, mosquito repellents, perfumes, scented sticks, domestic sprays, bleaches

4. Exposure to allergens:

- Seasonal : Pollen, Fungus
- Perennial: Dust mite, domestic pets, cockroaches

EARLY CHILDHOOD RISK FACTORS FOR PERSISTENT ASTHMA

1. Parental asthma (single-20\%, both-60\%)
2. Allergy

Atopic dermatitis (eczema)
Allergic rhinitis
Food allergy
Inhalant allergen sensitization
3. Severe lower respiratory tract infections requiring hospitalization Pneumonia
Bronchiolitis
4. Wheezing apart from colds
5. Male gender
6. Low birth weight
7. Environmental tobacco smoke exposure
8. Possible use of acetaminophen (paracetamol)
9. Exposure to chlorinated swimming pools
10. Reduced lung function at birth
11. Eosinophilia (>4\%)

Allergic Rhinitis - Causes

Seasonal/ Intermitant

Pollen from trees, grasses, and weeds

Perennial/ Persistant

House dust, mites
Mold and fungus spores
Cockroaches
Animal danders
Food
chemicals

Gastrointestinal Allergens

- Food:

Cow milk
Nuts
Wheats
Fruits
Egg
Meet
Fish
Fruit di mare

- Non-food

Bacterial antigens
Virus antigens
Fungal antigens Helminths
Airway antigens
Chemicals
Drugs

Cheracteristics of allergens

- Hydrolytic enzymes - proteases, carbohydrase, ribonuclease (dust mite, fungi, pollen)
- Pectin lyase, enolase, aldolase, alcohol dehydrogenase activity
- Enzyme inhibitor activity
- Homology with transport proteins
- Homology with regulator proteins

Factors influencing allergnicity

Intrinsic

- Molecular weight
- Concentration
- Solubility
- Stability
- Foreigness
- Biochemical activity
- Indigestable
- Heat stabil

Extrinsic

- Air pollution
- Cigarette smoke
- Vírus infection
- Genetics
- Season of birth
- Hygiene

Causes of occupational asthma

Allergy agent
 At-risk employment

- Laboratory animals
- Flour
- Biological enzymes enzimek
- Wood dust
- Latex rubber gloves
- Hair dyes
- Isocyanates
- Colophony (solder fumes)
- Scientific, animal house work
- Baking
- Soap powder industry work
- Saw milling, furniture manufacturing
- Health workers
- Hairdresser
- Painting industry
- Electronic industry

Examples of allergic contact eczema

- Nickel
- Cobalt
- Fragrances
- Lanolin
- P-Phenylendiamin -
- Epoxi resins
- Coins, watches, jewellery Metal-plated objects, wet cement
Cosmetics
Cosmetics, moisturizing creams
Hair dye, fur dye

Adhesive

Cross-reactions between Inhalant Allergens and Food „Oral allergy syndrome"

- Birch pollen
- Grasses
- Ragweed pollen
- House dust mite
- Latex
- Hazelnut, apple, pear, stone fruits (peaches, plums, cherries
- Melon, tomato, orange, cherries, potato
- Melon, bananas
- Snails
- Banana, chestnut, avocado, kiwi fruit

Environmental conditions influence the prevalence

Increases in allergy prevalence have occurred primarily in 'westernized' societies over the past few decades. Although both genetic and environmental factors influence the aetiology of asthma, changes in the genetic make-up of stable populations does not occur in this time frame. The recent rise in the prevalence of allergies and asthma is therefore thought to be primarily due to changes that have taken place in the environment in developed countries as a result of modernization. A comparison of environmental conditions in developed and underdeveloped countries has provided insight into possible causes.

Factors favoring the Th1 phenotype

Presence of older siblings
Early exposure to day care Tuberculosis, measles, or hepatitis A infection Rural environment

Factors favoring the Th2 phenotype
Widespread use of antibiotics
Western lifestyle
Urban environment Diet
Sensitization to house-dust mites and cockroaches

Allergic diseases including asthma

The interaction of genes and environmental factors determine the risk of allergic sensitization

o By early 2006, six genes had been identified by positional cloning and over 100 by candidate gene association.

- Polymorphisms in some of the genes are directly involved in the synthesis or effector functions of IgE.
- Environmental factors associated with allergy:

1. level of exposure to allergens ${ }^{100}$;
2. The way in which food is processed 101,102 ; elevated pH of the stomach contents of the fetus and young babies, or caused by antacid medications in adults 103 ;
3. atmospheric pollution ${ }^{1}$
4. Respiratory syncytial virus and rhinovirus infections during infancy
5. Staphylococcal aureus infections, which generate superallergenic enterotoxins $\underline{107,108 ;}$ and the activity of autoantibodies $109,110$.
Once sensitization occurs, these factors continue to operate, and atopy is exacerbated by the resulting inflammation, persistent IgE synthesis and epitope spreading

Nature Reviews | Immunology

Schematic view of the counter-regulation hypothesis.

Hygiene hypothesis and counter-regulation theory for allergy.

Skin prick test (SPT)= in vivo allergen skin test

- More sensitive but less specific than allergen specific IgE detection
- UK allergen groups: dog, cat, house dust, mite, grasses

Omalizumad inhibits the binding of lgE to FCeR of

In vitro tests: - 1: total IgE

- Serum IgE 10 000x less than IgG
- Normal < 200ng/ml
- Allergy: $300-600 \mathrm{ng} / \mathrm{ml}$

Novel allergens identified in Haliotis
midae (abalone)

Isolation of allergens

- From the origibal allergen with water extraction, followed by chromatography
- Affinity chromatography with allergen specifikuc monoclonal antibody
- DNA technique: cloning the allergen

Cloning of Allergens

Hdgate, Church and Lichtenstein: Allergy 3rd edition © 2006 Elsevier Ltd

In vitro tests: - 2: allergén specifikus lgE

- RIA
- ELISA
- Chemiluminescent methods
- Western blot - Immunoblot

Allergen specific IgE ELISA sreen test

allergen specific mAb

ELISA

Holgate, Church and Lichtenstein: Allergy 3rd edition © 2006 Elsevier Ltd

