# Grundlagen der Immunologie

Vorlesung 25-26.

## Erbliche und erworbene Immundefekte

## Toleranz oder Immundefekt (Immundefizienz)?

<u>Toleranz</u>: unser Körper gibt keine Antigen-spezifische Reaktivität, obwohl Antigenrezeptortragende Lymphozyten vorhanden sind.

Immundefizienz: ein angeborener oder erworbener Zustand, wo auf verschiedene Antigene eine geringerte oder fehlende Antwort hervorgerufen wird, wegen Fehlfunktion oder Mangel der Antigenrezeptor-tragenden Zellen oder Effektor-Komponente.

#### Gruppen der Immundefizienzen

#### I. Erbliche

- 1) <u>Defizienz von Phagozyten</u>
- 2) <u>Defizienz von Komplementen</u>
- 3) Kombinierte Defizienzen (SCID)
- 4) <u>T-Zell-Defizienzen</u>
- 5) <u>B-Zell-Defizienzen</u>

#### II. Erworbene

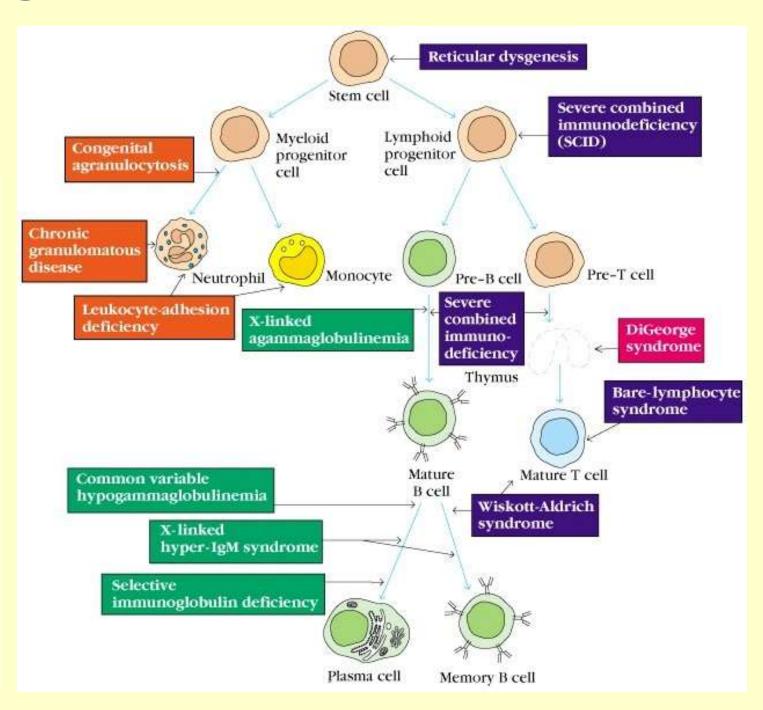
- 1) <u>Maligne</u> Erkrankungen (Tumoren, besonders Erkrankungen der Blutbildung)
- 2) <u>Systemerkrankungen</u> (autoimmune Krankheiten, Sarcoidose)
- 3) <u>Infektionskrankheiten</u>/AIDS
- 4) medikamentöse <u>Immunsuppression</u> (z.B.: autoimmune Krankheiten, Transplantation)
- 5) <u>Strahlensyndrom</u>
- 6) <u>Mangelernährung</u>
- 7) <u>Verbrennungen</u>

## Allgemeine klinische Symptome

- sich ständig wiederholende Infektionen
- Haut-, Schleimhautrötungen
- chronischer Durchfall
- Ermüdbarkeit
- Hepato-Splenomegalie
- Autoimmunität
- Chronische Osteomyelitis

## Diagnostik

- Anamnese, vor allem die Infektionen
- Familiengeschichte wegen erblicher Defekte
- Höhe, Gewicht und Entwicklung des Kindes
- Reaktion auf Impfungen
- Labordiagnostik:
  - T-, B-, NK-Zell-Funktionen, Neutrophil-Funktionsteste, Komplement-Assays
- Genetischer Hintergrund

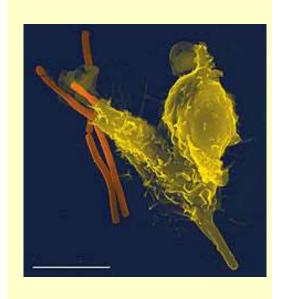

## Hintergrund der Immundefekte

Defizienzen der unspezifischen Immunität

B - Zell -Defizienzen

T- und B -Zell-Defizienzen

T - Zell -Defizienzen



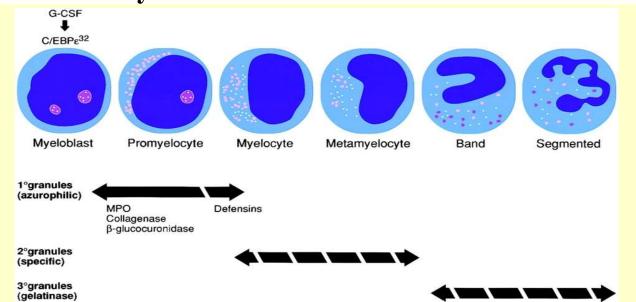

### I. Erbliche Immundefekte

1. Angeborene Immunität

### "Häufige" zelluläre Immundefizienzen der angeborenen Immunität

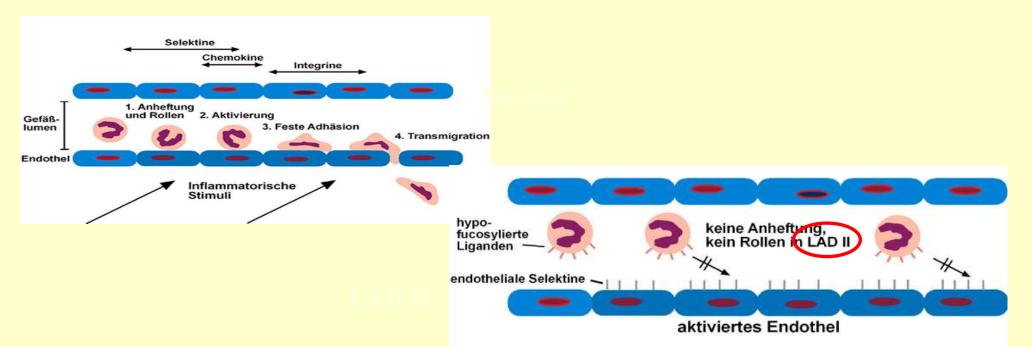
- Granula-Defekte der Granulozyten/Monozyten
- Intrazelluläre Tötungsdefekte
- Störungen der Adhäsion und der Chemotaxis
- Defekte der NK-Zellen




#### Granula - Defekte

#### Defekte der primären Granula

- Die Produkte der primären Granula werden voneinander funktionell ersetzt, der Mangel der einzelnen Faktoren (z.B.: MPO- Myeloperoxidase) erhöht die Sensitivität gegenüber Infektionen nicht.
- <u>ELA-2-Genmutation</u> (neutrophyle Elastase), zyklische Neutropenie (21-tägliche oszillierende Reduktion der neutrophylen Granulozyten)


#### Defekte der spezifischen Granula (SGD):

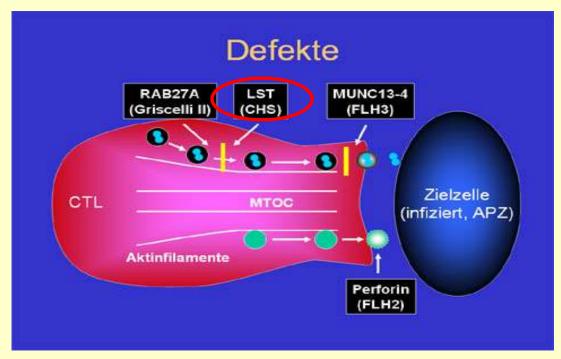
Defekt des C/EBP (CCAAT-enhancer-bindendes Protein) Transkriptions-Faktoren. Asurophyle Granula sind vorhanden (Defensine), aber geben keinen Schutz gegen pyogene (eitererregende) Infektionen. Störungen der eosinophylen Granulozyten und Thrombozyten sind auch vorhanden.

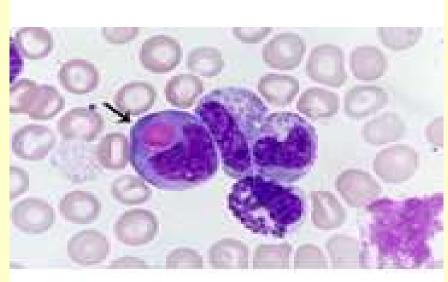


## Defekte der Zellmembrane der neutrophylen Granulozyten: Adhäsion und Chemotaxis

- Prävalenz: 1/100 000
- LAD (Leukozyt ädhesion Defizienz) I CD11/18 (<u>LFA-1</u>) Defekt
- LAD II L-Selektin (fukosiliert) Ligand-Defekt, extrazelluläre bakterielleund Pilzinfektionen
- WHIM CXCR4/SDF-1-Rezeptorstörung (Warze, Hypogammaglobulinämie, Infektionen, Myelochatexis: hypersegmentiertes Nukleus, Leukopenie/ Neutropenie)



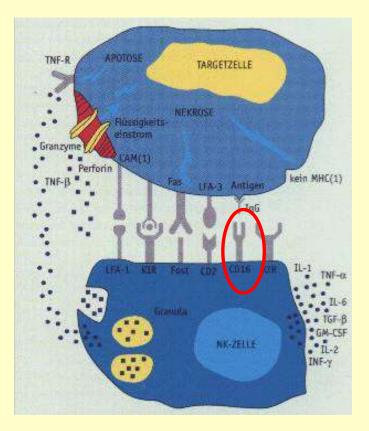

#### Chediak – Higashi - Syndrom

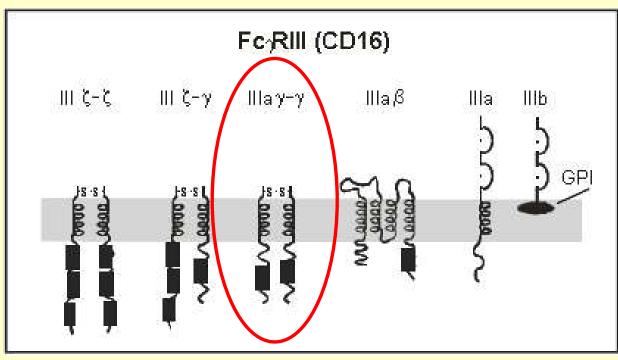

Chemotaxis und intrazelluläre Bakterizidie sind gestört

Mutation des CHS1-Gens (auch als LYST –lysosomaler Transportregulator genannt)

Chemotaxis der Granulozyten und Monozyten ist abnormal

Defekte der NK-Zell-Funktionen sind oft vorhanden




#### NK – Zell - Defizienz

FCGR3A-Genmutation - CD16 – FcRγIIIa allein NK-Zellen betroffenes Defekt

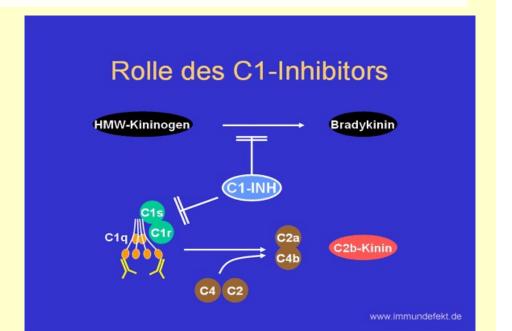
- HSV-, VZV-, EBV- Virusinfektionen sind oft vorhanden
- Anzahl der NK-Zellen ist normal





#### Komplementsystem - Defekte

- C1-, C2-, C4-Mangel krankhafte Depositionen von Immunkomplexen
- C3-Defizienz und Defekte der Komponenten der alternativen und klassischen Wege invasive bakterielle Infektionen verursacht von enkapsulierten Bakterien z.B.: Pneumococcus, Streptococcus oder Hemophilus
- Defizienzen der Komponenten des terminalen Weges systemische Neisseria-Infektionen
- <u>Lektin Weg-Defizienz</u> MBL- Defekt mikrobielle Infektionen in der Kindheit (typisch zwischen dem 6. 18. Monat) Bei Erwachsenen als sekundäres Defekt vorhanden wegen Immunsupression, AIDS oder bestimmter autoimmuner Krankheiten. MBL-Defizienz ist häufig, aber die meisten Betroffenen haben keine erhöhte Wahrscheinlichkeit auf Infektionen.

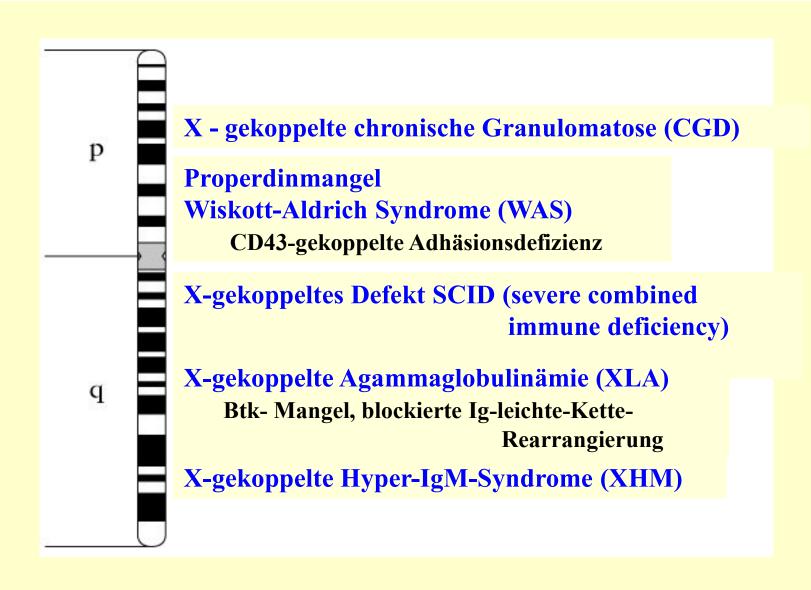

### Komplementsystem - Defekte

#### C1-Inhibitor-Defizienz (Hereditäres angioneurotisches Oedem-

**HAE)** Inzidenz:2/100,000.

Biochemische Ursache des HAE ist ein funktioneller Mangel des C1-Esterase-Inhibitors (C1-INH). C1-INH ist ein Regulationsprotein des klassischen Komplementaktivationsweges. Seine Biosynthese erfolgt vorwiegend in der Leber. C1-INH gehört zu der Familie der Proteinasen-Inhibitoren (Serpinen) des Humanplasmas. C1-INH ist kein Enzym; er hemmt die Startphasen des Gerinnungs-, Fibrinolyse-, Kinin- und Komplementsystems, indem er stöchiometrisch mit aktiviertem C1, aktiviertem Hageman-Faktor (XIIa), Faktor XIa, Plasma-Kallikrein und Plasmin nicht mehr dissoziierbare Komplexe bildet.






#### I. Erbliche Immundefekte

2. Spezifische Immunität

#### meistens rezessive Krankheiten

X -gekoppelt



## Schwere kombinierte Immundefekte (SCID)

- T- und B-Zell-Defekte
- Allgemeine erhöhte Anfälligkeit für Infektionen im 3-6 Monat
- Atemwege, Gastrointestinaltrakt, Haut
- weder Thymus noch Lymphknoten noch Tonsillen sind nachweisbar

### Hintergrund von SCID

- •ADA Mangel (Adenosindesaminase)
- •PNP Mangel (Purinnucleotidphosphorylase)
- X-gekoppeltes Defekt Defekt der gemeinsamen γ-Kette mehrerer Zytokinrezeptoren (IL-2, IL-4, IL-7, IL-9, IL-15)
- Autosomale SCID fehlerhafte DNA- Reparatur
- RAG-1-, RAG-2-Defizienz (Omenn's Syndrom)
- ZAP-70-Defizienz

## SCID



Normal

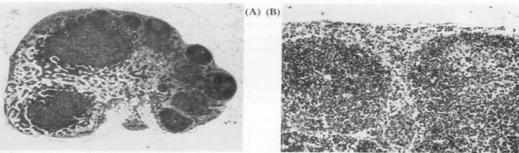
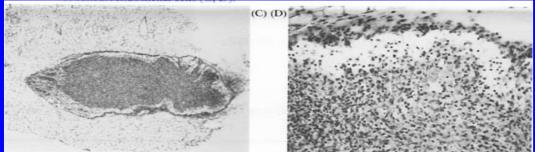
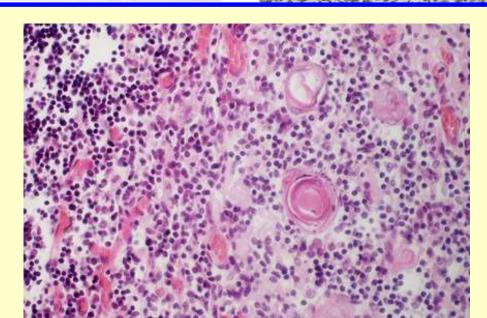
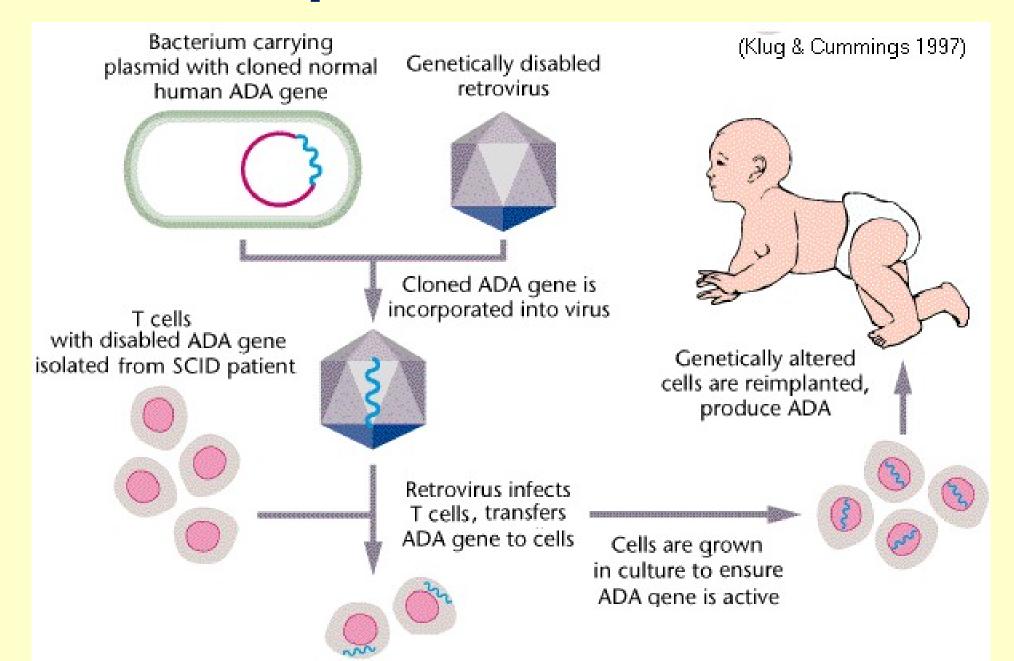





Figure 1 Lymph node of a +/? control has numerous, prominent follicles with germinal centers (A, B) while the scid/scid littermate has only a small, rudimentary lymph node consisting




**SCID** 






## Therapie von ADA-SCID



## SCID- DiGeorge-Syndrom

- Prävalenz: 25/100000
- · Hemmungsmissbildung der 3. und 4. Schlundtasche
- Entwicklungsdefekte des Thymusepithels
- Andere Gewebeentwicklungsdefekte (z.B.: Nebenschilddrüse)
- Gestörte T-Zell-Reifung
- Keine T-Zell-abhängige Antikörperproduktion







#### **B-Zell-Defizienzen**

Erhöhte Infektionsanfälligkeit (Atemwege) 1 extrazelluläre Bakterien (pyrogene=eitererregende) Bakterien mit Polysacharidhülle (*H. influenzae*, *S. pneumoniae*)

#### Beispiele:

- Variables Immundefekt MHC-gekoppelt, gestörte IgAund IgG-Produktion
- X-gekoppelte Agammaglobulinämie (Bruton) Verlust der Btk-Tyrosinkinase, keine B-Zellen (Reifungsblock im Prä-B-Zell-Stadium)
- X-gekoppelte Hyper-lgM-Syndrome fehlerhaftes CD40-Ligand, kein Isotypenwechsel
- ➤ Selektiver IgA-Mangel MHC-gekoppelt, keine IgA-Synthese, Infektionen der Atemwege, Frequenz: 1/400!



## Wiskott-Aldrich-Syndrom

- X gekoppelt (Prävalenz: 0,4/100 000)
- Typische Trias: Thrombozytopenie, Ekzeme, Infektionen
- angelhafte Antikörperantwort auf Polysacharide und gestörte Reaktionen auf T- Zell-Aktivierung
- •fehlerhafte Expression von CD43
- thrombozytopenische Purpura

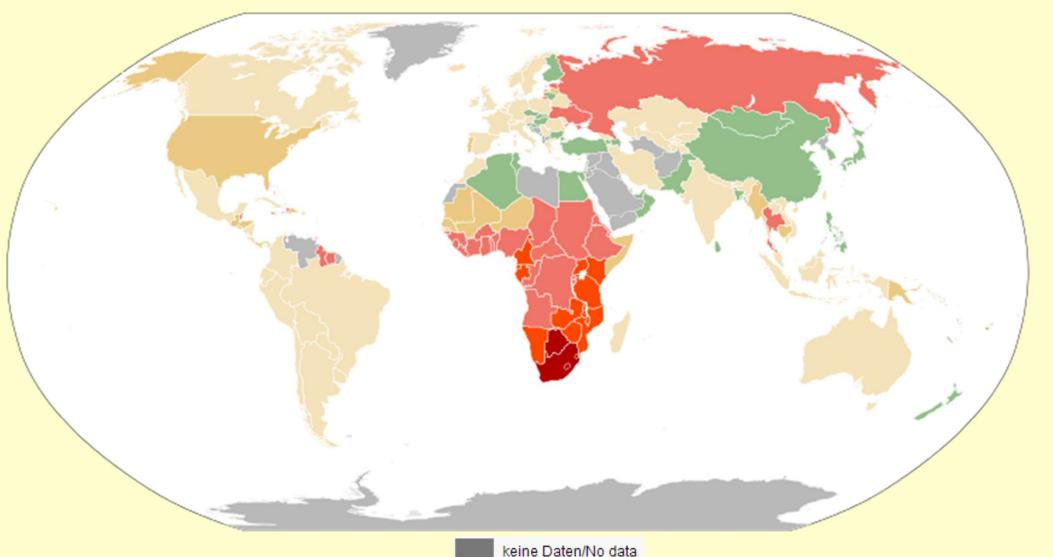


Aktinbündelung in T-Zellen und Thrombozyten

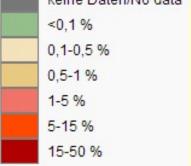
### II. Erworbene immundefekten

## HIV-Infektion und der Pathomechanismus von AIDS

## **Epidemiologie (WHO)**


|                                                  | 2000                                            | 2005                                            | 2010                                            | 2015                                            | 2016                                            | 2017                                            | 2018                                            | 2019                                            | 2020/<br>*june2021                                                 | 2024                        |
|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------|-----------------------------|
| People living with HIV                           | 25.5 million<br>[20.5 million–<br>30.7 million] | 28.6 million<br>[23.0 million–<br>34.3 million] | 31.1 million<br>[25.0 million–<br>37.3 million] | 34.6 million<br>[27.7 million–<br>41.4 million] | 35.3 million<br>[28.3 million–<br>42.2 million] | 35.9 million<br>[28.8 million–<br>43.0 million] | 36.6 million<br>[29.3 million–<br>43.8 million] | 37.2 million<br>[29.8 million–<br>44.5 million] | 37.7 million<br>[30.2 million–<br>45.1 million]                    | 40.8<br>million             |
| New HIV<br>infections<br>(total)                 | 2.9 million<br>[2.0 million–<br>3.9 million]    | 2.4 million<br>[1.7million–<br>3.4 million]     | 2.1 million<br>[1.5 million–<br>2.9 million]    | 1.8 million<br>[1.3 million–<br>2.4 million]    | 1.7 million<br>[1.2 million–<br>2.4 million]    | 1.7 million<br>[1.2 million–<br>2.3 million]    | 1.6 million<br>[1.1 million–<br>2.2 million]    | 1.5 million<br>[1.1 million–<br>2.1 million]    | 1.5 million<br>[1.0 million-<br>2.0 million]                       | 1.3<br>million<br>(1.0-1.7) |
| New HIV<br>infections<br>(aged 15+ years)        | 2.3 million<br>[1.6 million–<br>3.2 million]    | 2.0 million<br>[1. 4 million–<br>2. 7 million]  | 1.8 million<br>[1.3 million–<br>2.5 million]    | 1.6 million<br>[1.1 million–<br>2.2 million]    | 1.5 million<br>[1.1 million–<br>2.1 million]    | 1.5 million<br>[1.0 million–<br>2.1 million]    | 1.4 million<br>[1.0 million–<br>2.0 million]    | 1.4 million<br>[960 000–<br>1.9 million]        | 1.3 million<br>[910 000–<br>1.8 million]                           | 1.3million                  |
| New HIV<br>infections<br>(aged 0–14<br>years)    | 520 000<br>[340 000–<br>820 000]                | 480 000<br>[310 000–<br>750 000]                | 320 000<br>[210 000–<br>510 000]                | 190 000<br>[130 000–<br>300 000]                | 190 000<br>[120 000–<br>290 000]                | 180 000<br>[120 000–<br>280 000]                | 170 000<br>[110 000–<br>260 000]                | 160 000<br>[100 000–<br>250 000]                | 150 000<br>[100 000–<br>240 000]                                   | 130 000                     |
| AIDS-related deaths                              | 1.5 million<br>[1.1 million–<br>2.2 million]    | 1.9 million<br>[1.3 million–<br>2.7 million]    | 1.3 million<br>[910 000–<br>1.9 million]        | 900 000<br>[640 000–<br>1.3 million]            | 850 000<br>[600 000–<br>1.2 million]            | 800 000<br>[570 000–<br>1.2 million]            | 750 000<br>[530 000–<br>1.1 million]            | 720 000<br>[510 000–<br>1.1 million]            | 680 000<br>[480 000–<br>1.0 million]                               | 630 000                     |
| People<br>accessing<br>antiretroviral<br>therapy | 560 000<br>[560 000–<br>560 000]                | 2.0 million<br>[2.0 million–<br>2.0 million]    | 7.8 million<br>[6.9 million–<br>7.9 million]    | 17.1 million<br>[14.6 million–<br>17.3 million] | 19.3 million<br>[16.6 million–<br>19.5 million] | 21.5 million<br>[19.6 million–<br>21.7 million] | 23.1 million<br>[21.9 million–<br>23.4 million] | 25.5 million<br>[24.5 million–<br>25.7 million] | 27.5 million<br>[26.5 million–<br>27.7 million] /<br>*28.2 million | 31.6<br>million             |
| HIV resources available**                        | US\$ 5.1<br>billion                             | US\$ 9.3<br>billion                             | US\$ 16.6<br>billion                            | US\$ 20.3<br>billion                            | US\$ 20.7<br>billion                            | US\$ 22.3<br>billion                            | US\$ 22.0<br>billion                            | US\$ 21.6<br>billion                            | US\$ 21.5<br>billion                                               | 20.8<br>Billion             |

## Regionale Statistik (WHO - Dez 2018)


#### Regional HIV and AIDS statistics and features | 2018

|                                 | Adults and children living with HIV | Adults and children<br>newly infected with HIV | Adult and child deaths due to AIDS |
|---------------------------------|-------------------------------------|------------------------------------------------|------------------------------------|
| Eastern and southern Africa     | 20.6 million                        | 800 000                                        | 310 000                            |
|                                 | [18.2 million–23.2 million]         | [620 000–1.0 million]                          | [230 000–400 000]                  |
| Western and central Africa      | 5.0 million                         | 280 000                                        | 160 000                            |
|                                 | [4.0 million–6.3 million]           | [180 000-420 000]                              | [110 00–230 000]                   |
| Middle East and North Africa    | 240 000                             | 20 000                                         | 8400                               |
|                                 | [160 000-390 000]                   | [8500-40 000]                                  | [4800–14 000]                      |
| Asia and the Pacific            | 5.9 million                         | 310 000                                        | 200 000                            |
|                                 | [5.1 million–7.1 million]           | [270 000–380 000]                              | [160 000–290 000]                  |
| Latin America                   | 1.9 million                         | 100 000                                        | 35 000                             |
|                                 | [1.6 million–2.4 million]           | [79 000–130 000]                               | [25 000-46 000]                    |
| Caribbean                       | 340 000                             | 16 000                                         | 6700                               |
|                                 | [290 000–390 000]                   | [11 000–24 000]                                | [5100–9100]                        |
| Eastern Europe and central Asia | 1.7 million                         | 150 000                                        | 38 000                             |
|                                 | [1.5 million–1.9 million]           | [140 000–160 000]                              | [28 000–48 000]                    |
| Western and central Europe and  | 2.2 million                         | 68 000                                         | 13 000                             |
| North America                   | [1.9 million–2.4 million]           | [58 000–77 000]                                | [9400–16 000]                      |
| TOTAL                           | 37.9 million                        | 1.7 million                                    | 770 000                            |
|                                 | [32.7 million–44.0 million]         | [1.4 million–2.3 million]                      | [570 000–1.1 million]              |

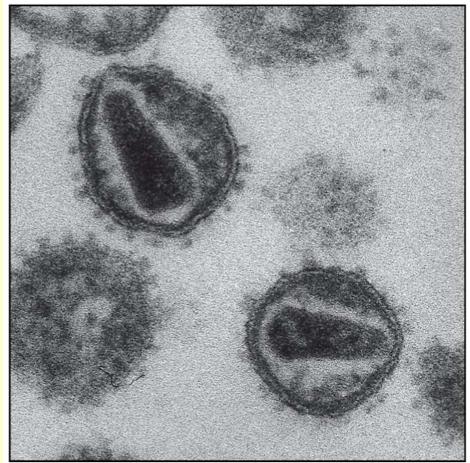
## **Epidemiologie**










## Übertragung

#### Übertragung durch Körperflüssigkeiten:

- Blut
- Samenflüssigkeit
- Vaginalsekret
- Muttermilch
- durch Plazenta

#### HIV

- HIV-1 (weltweit mehr virulent) / HIV-2 (Westafrika, Indien geringer virulent)
- Retrovirus, Lentivirus
- infiziert CD4 T-Zellen, dendritische Zellen und Makrophagen



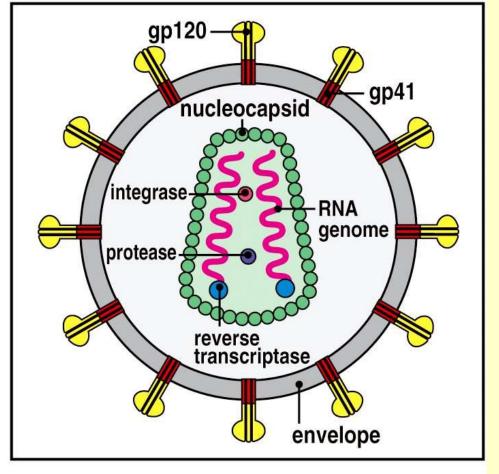
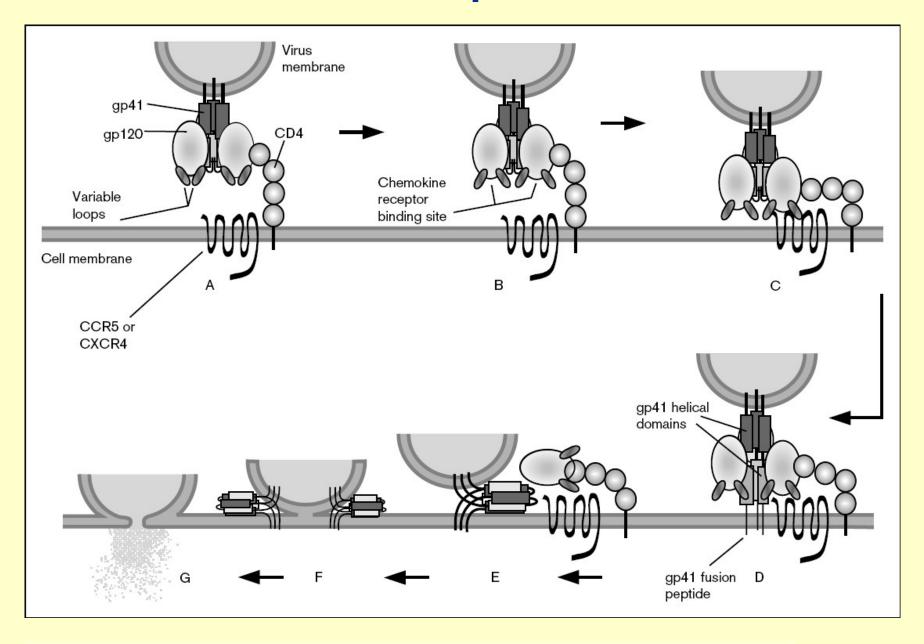




Figure 11-21 Immunobiology, 6/e. (© Garland Science 2005)

## **HIV-Rezeptoren**

- Gp120-Rezeptor = CD4
- DC-SIGN: ,,dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin" (Bindung von HIV an diesen Rezeptor erfolgt keinen Viraleintritt)
- Ko-Rezeptoren = Kemokinrezeptoren
  - CCR5 dendritische Zellen, Makrophagen, CD4 T-Zellen -"macrophage-tropic" "R5" – vorzugsweise durch Geschlechtsverkehr übertragen
  - CXCR4 aktivierte T-Zellen "lymphocyte-tropic" "X4"

#### Rolle der Kemokinrezeptoren in HIV-Infektion



In: Farida Shaheen and Ronald G. Collman: Co-receptor antagonists as HIV-1 entry inhibitors (Current Opinion in Infectious Diseases 2004, 17:7–16)

#### Transport von HIV zu lymphatischen Geweben – Das "Trojanische Pferd"

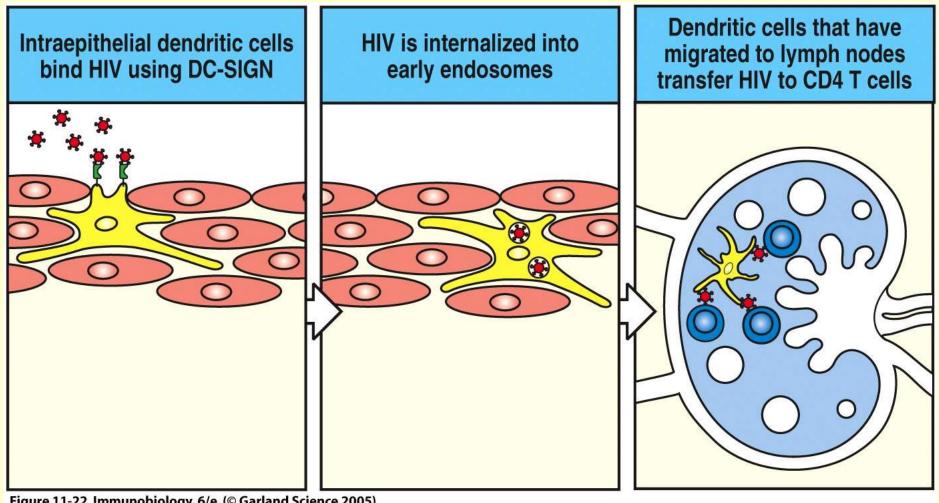
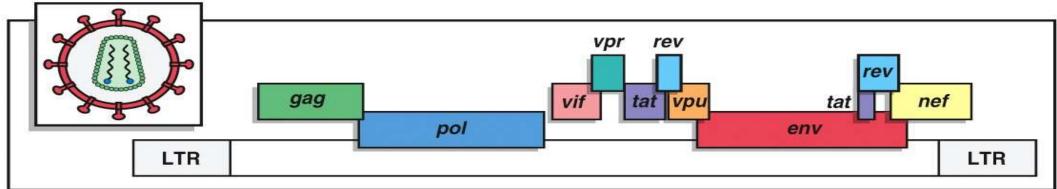




Figure 11-22 Immunobiology, 6/e. (© Garland Science 2005)

•geschichtetes squamöses Epithel (Vagina, Penis, Zervix, Anus) – die intraepithelische DC (DC-SIGN) –Virustransfer zu den Lymphknoten einschichtiges Epithel (Rektum, Endozervix) – CCR5 + galactosyl ceramide Exprimierung an Epithel – Virustransfer zu submukosalen DC + T-Zellen

## **HIV-Genom**



| Gen                                    | Genprodukt / Funktion                                                                              |
|----------------------------------------|----------------------------------------------------------------------------------------------------|
| Gen                                    | Genprodukt / Funktion                                                                              |
| gag (gruppenspezifisches Antigen)      | Proteine für Viruskern und – matrix                                                                |
| pol (Polymerase)                       | Reverse Transkriptase, Protease und Integrase                                                      |
| env (Virushülle)                       | Transmembranglykoproteine gp 120 und gp 41                                                         |
| tat (Transaktivator)                   | Transkriptionsverstärker                                                                           |
| rev (Regulator der viralen Expression) | Ermöglicht Export von teilgespleißter und ungespleißter Transkripte aus dem Zellkern               |
| vif (Infektiosität des Virus)          | Beeinflusst Infektiosität der Viruspartikel                                                        |
| vpr (virales R-Protein)                | DNA-Transport in den Zellkern; erhöht<br>Virusproduktion; hält Zellzyklus an                       |
| vpu (virales U-Protein)                | Stimuliert intrazellulären Abbau von CD4<br>Verstärkt Virusfreisetzung durch die Membran           |
| nef (negativer Kontrollfaktor)         | Verstärkt Virusreplikation <i>in vivo</i> und <i>in vitro</i> Abwärtsregulation von CD4 und MHC-II |

## HIV-Replikation 1.

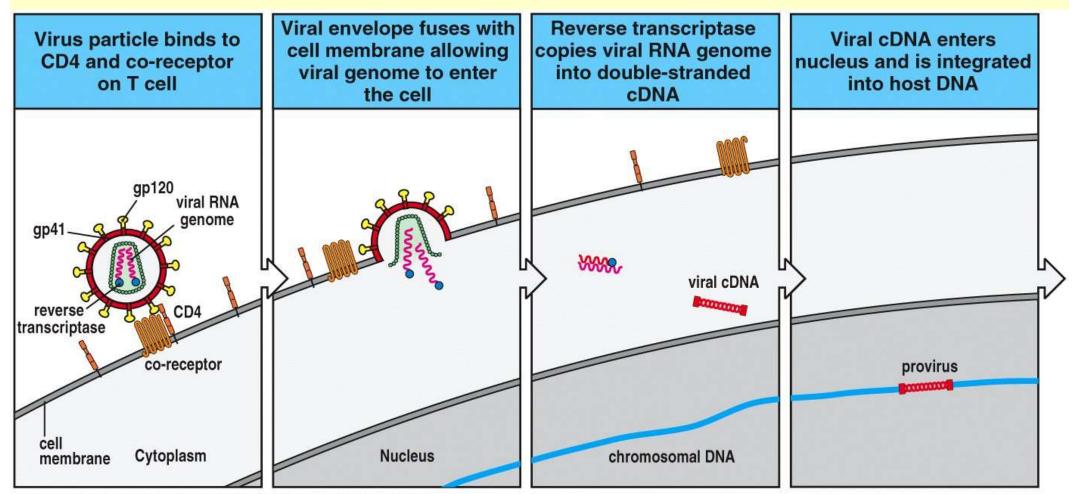
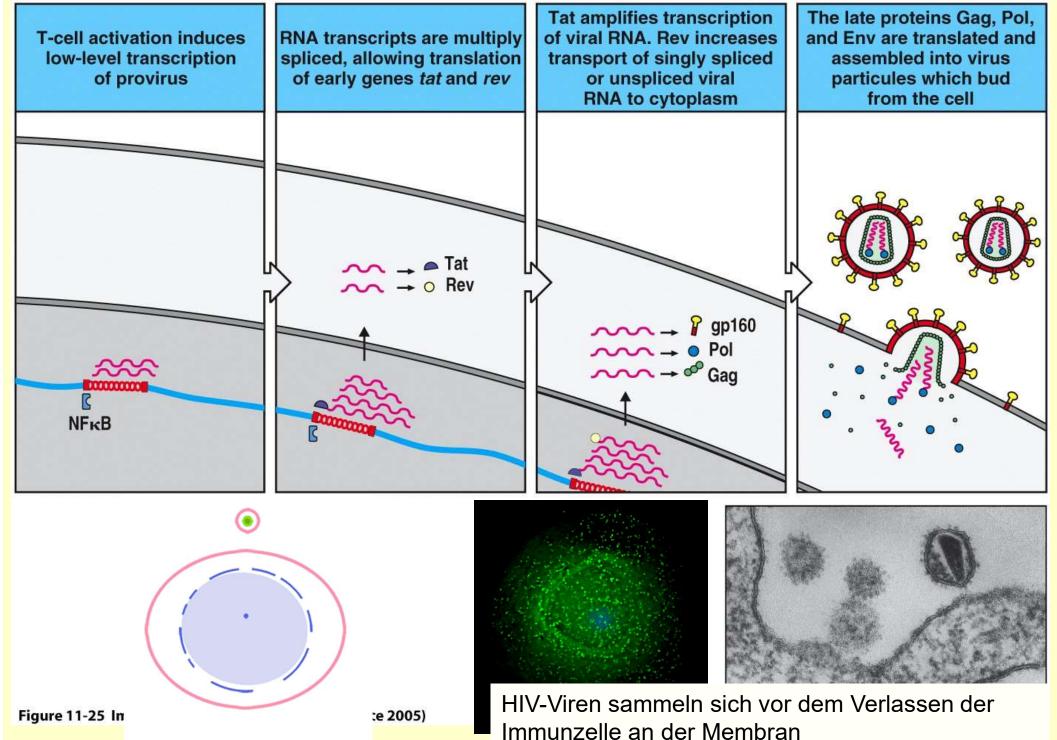




Figure 11-23 Immunobiology, 6/e. (© Garland Science 2005)

**HIV-Replikation 2.** 



## Immunantwort gegen HIV

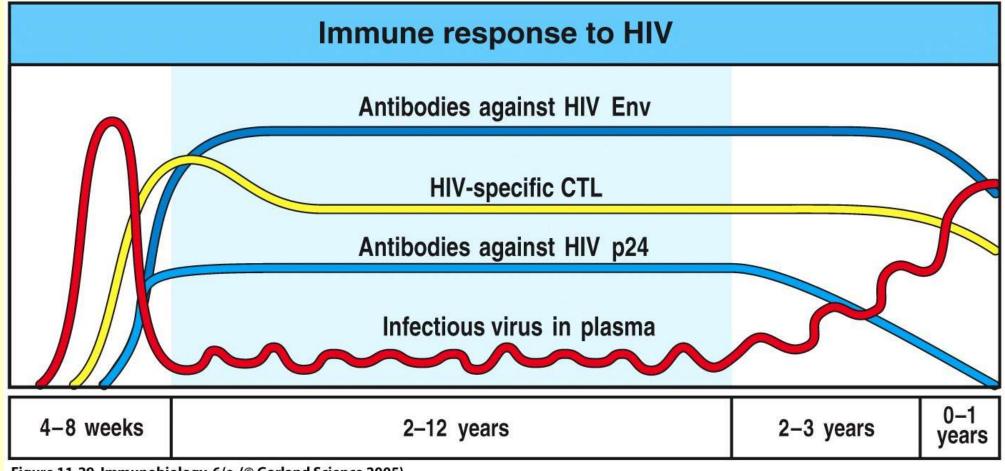
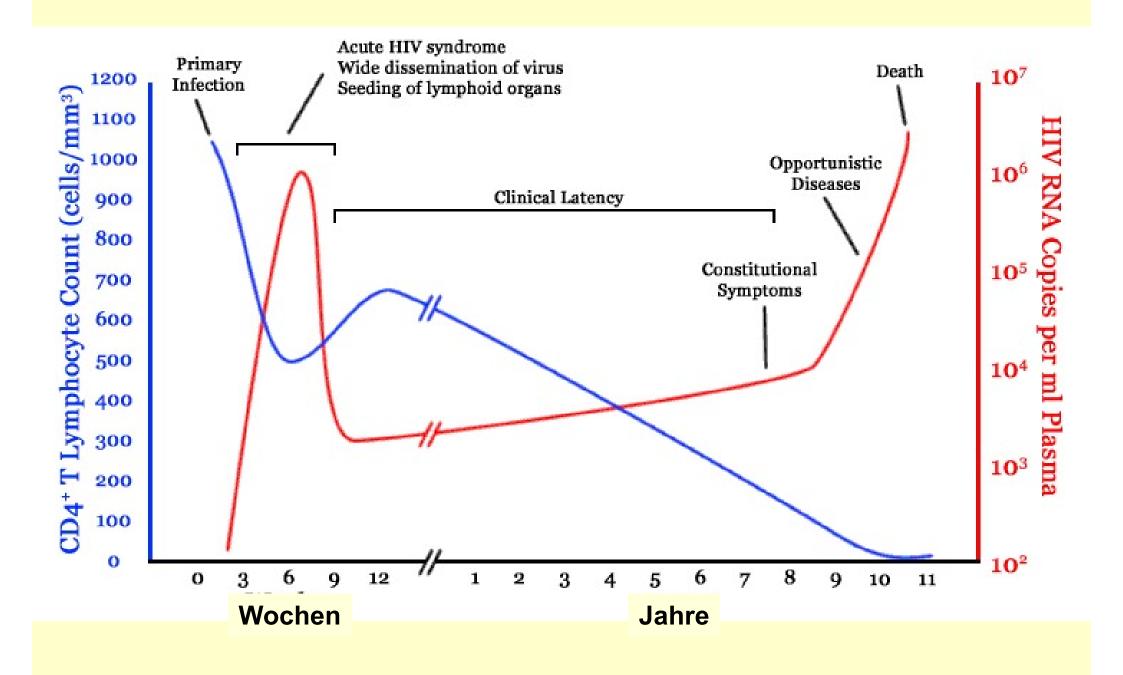




Figure 11-29 Immunobiology, 6/e. (© Garland Science 2005)

Problem: Th-Aktivierung löst Virusreplikation aus!

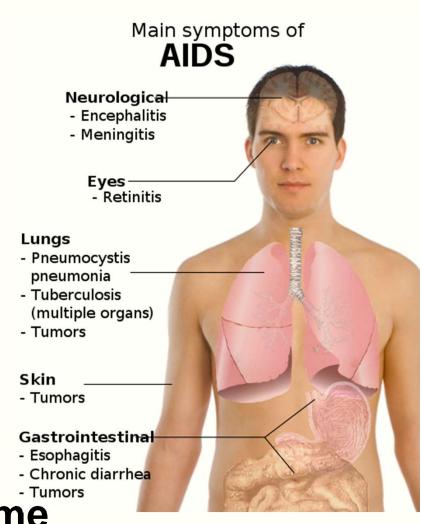
### Klinischer Verlauf von AIDS



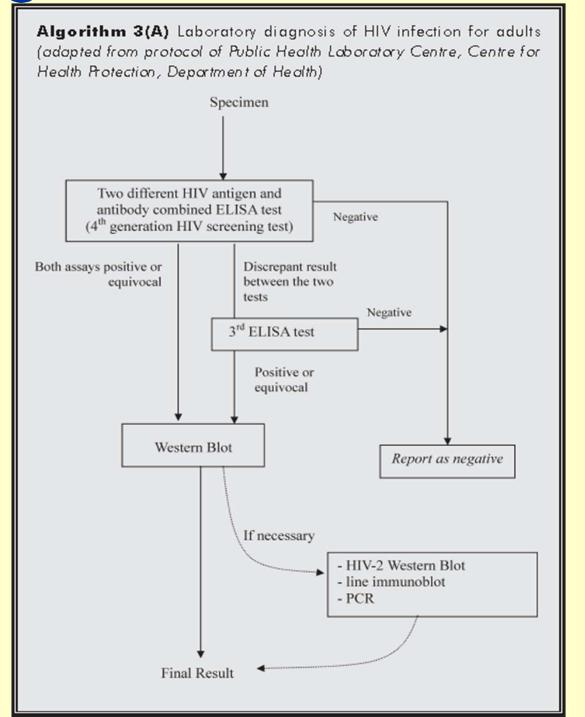
## Stadieneinteilung der HIV-Infektion

|                 | klinische Kategorien |           |    |  |
|-----------------|----------------------|-----------|----|--|
| CD4+ T-Zellzahl | A                    | В         | C  |  |
| > 500/µl        | <b>A1</b>            | B1        | C1 |  |
| 200 - 499/µl    | <b>A2</b>            | B2        | C2 |  |
| < 200/µl        | <b>A3</b>            | <b>B3</b> | C3 |  |

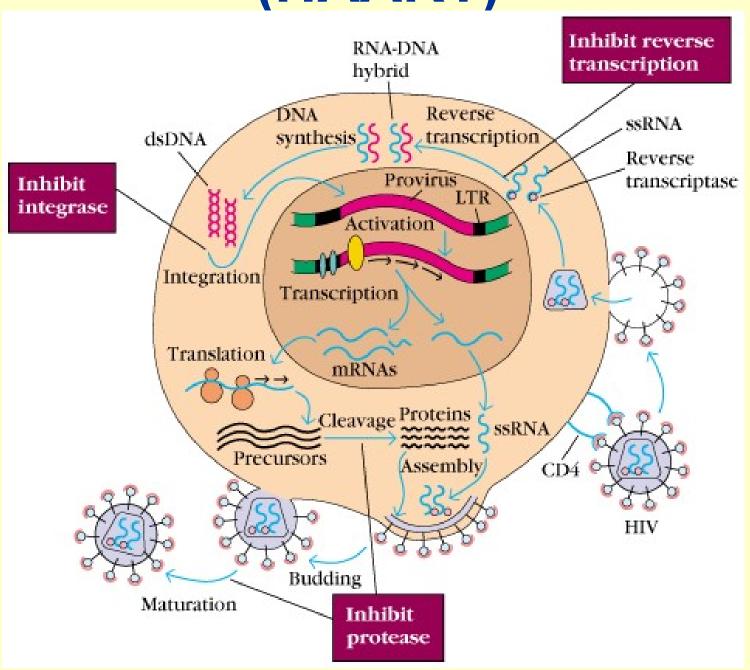
Die grüne Buchstaben entsprechen des AIDS Krankheitsbildes


#### Todesursachen bei AIDS-Kranken

#### **Opportunistische Infektionen:**

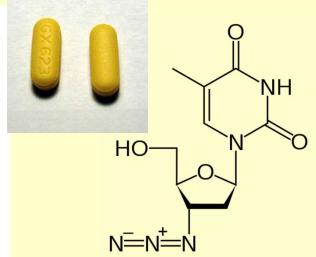

- Parasiten: Toxoplasma, Cryptosporidium, Leishmania, Microsporidium
- Bakterien: Mycobacterium-Stämme, Salmonella-Stämme
- Viren: HSV, CMV, VZV

#### Krebserkrankungen:


Kaposi-Sarkom
Non-Hodgkin-Lymphome
EBV-positive Burkitt-Lymphome
primäre Lymphome des Gehirns



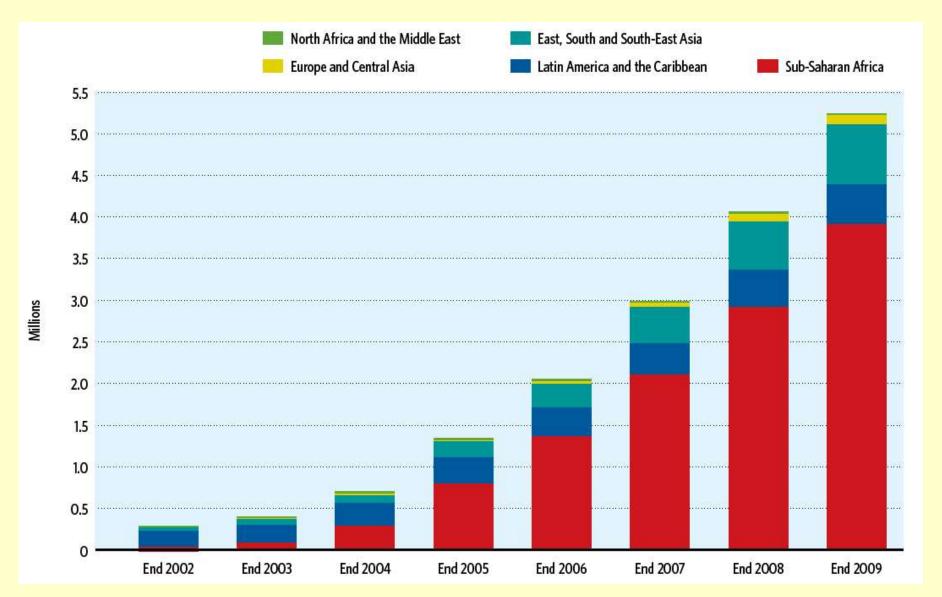
## Diagnostik der HIV-Infektion




## Therapeutische Möghlichkeiten (HAART)



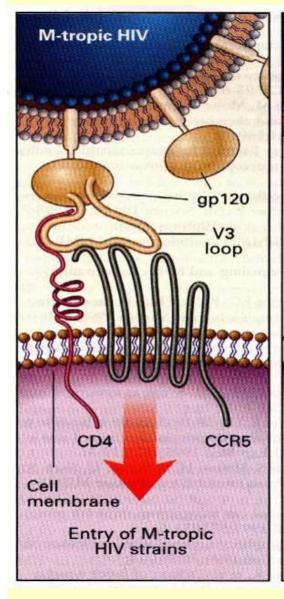
#### TABLE 19-5 SOME ANTI-HIV DRUGS IN CLINICAL USE

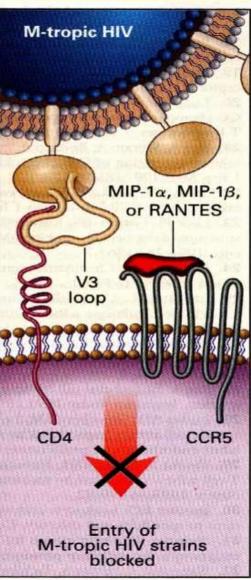

| Generic name (other names)                                                                                                                                            | Typical dosage                                                                                   | Some potential side effects                                                                                                                                                                                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                       | Reverse transcriptase inhibito                                                                   | rs: Nucleoside analog                                                                                                                                                                                               |  |  |
| Didanosine (Videx, ddl)                                                                                                                                               | 2 pills, 2 times a day on<br>empty stomach                                                       | Nausea, diarrhea, pancreatic inflammation,<br>peripheral neuropathy                                                                                                                                                 |  |  |
| Lamivudine (Epivir, 3TC)                                                                                                                                              | 1 pill, 2 times a day                                                                            | Usually none                                                                                                                                                                                                        |  |  |
| Stavudine (Zerit, d4T)                                                                                                                                                | 1 pill, 2 times a day                                                                            | Peripheral neuropathy                                                                                                                                                                                               |  |  |
| Zalcitabine (HIVID, ddC) 1 pill, 3 times a day                                                                                                                        |                                                                                                  | Peripheral neuropathy, mouth inflammation,<br>pancreatic inflammation                                                                                                                                               |  |  |
| Zidovudine (Retrovir, AZT) 1 pill, 2 times a day                                                                                                                      |                                                                                                  | Nausea, headache, anemia, neutropenia (reduced<br>levels of neutrophil white blood cells), weakness,<br>insomnia                                                                                                    |  |  |
| Pill containing lamivudine<br>and zidovudine (Combivir)                                                                                                               | 1 pill, 2 times a day                                                                            | Same as for zidovudine                                                                                                                                                                                              |  |  |
| 20                                                                                                                                                                    | Reverse transcriptase inhibitors:                                                                | Nonnucleoside analogues                                                                                                                                                                                             |  |  |
| Delavirdine (Rescriptor)                                                                                                                                              | 4 pills, 3 times a day<br>(mixed into water);<br>not within an hour of<br>antacids or didanosine | Rash, headache, hepatitis                                                                                                                                                                                           |  |  |
| Nevirapine (Viramune)                                                                                                                                                 | 1 pill, 2 times a day                                                                            | Rash, hepatitis                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                       | Protease inhi                                                                                    | bitors                                                                                                                                                                                                              |  |  |
| ndinavir (Crixivan)  2 pills, 3 times a day on empty stomach or with a low-fat snack and not within 2 hours of didanosine                                             |                                                                                                  | Kidney stones, nausea, headache, blurred vision,<br>dizziness, rash, metallic taste in mouth, abnorma<br>distribution of fat, elevated triglyceride and<br>cholesterol levels, glucose intolerance                  |  |  |
| Nelfinavir (Viracept) 3 pills, 3 times a day<br>with some food                                                                                                        |                                                                                                  | Diarrhea, abnormal distribution of fat, elevated<br>triglyceride and cholesterol levels, glucose<br>intolerance                                                                                                     |  |  |
| Ritonavir (Norvir)  6 pills, 2 times a day (or 4 pills, 2 times a day if taken with saquinavir) with food and not within 2 hours of didanosine                        |                                                                                                  | Nausea, vomiting, diarrhea, abdominal pain,<br>headache, prickling sensation in skin, hepatitis,<br>weakness, abnormal distribution of fat, elevated<br>triglyceride and cholesterol levels, glucose<br>intolerance |  |  |
| Saquinavir (Invirase, 6 pills, 3 times a day a hard-gel capsule; (or 2 pills, 2 times a day fortovase, a soft-gel capsule) if taken with ritonavir) with a large meal |                                                                                                  | Nausea, diarrhea, headache, abnormal distribution of fat, elevated triglyceride and cholesterol levels, glucose intolerance                                                                                         |  |  |

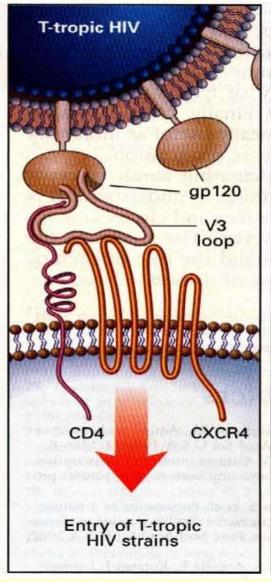


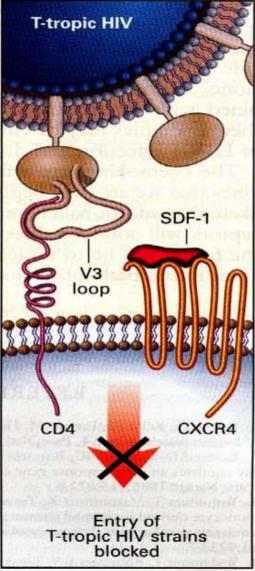
Azithothymidin (AZT)

SOURCE: JG Bartlett and RD Moore, 1998, Improving HIV therapy, Sci. Am. 279(1):87.


## **Antiretroviral therapy (2002-2009)**




## Liganden von Kemokinrezeptoren hemmen HIV- Aufnahme in die Zielzellen









## Der Verlauf der **HIV-Infektion**



Dez. 1

Dendritic Primary infection of cells in blood, mucosa Drainage to lymph nodes, Infection established in lymphoid tissues, e.g., lymph node Acute HIV syndrome, spread of infection throughout the body Viremia HIV-specific CTLs antibodies Immune response Partial control of viral replication Establishment of chronic infection: virus trapped in lymphoid tissues by follicular dendritic cells; Clinical latency low-level viral production Other microbial infections: cytokines Increased viral replication Destruction of lymphoid tissue; depletion of AIDS CD4+ T cells

## Die Nobelpreisträger in Physiologie / Medizin 2008

#### **HPV**



Harald zur Hausen

Deutschland

#### HIV



Francoise Barré-Sinoussi Frankreich



Luc Montaigner

Frankreich